10.1002/ejoc.201800618
European Journal of Organic Chemistry
COMMUNICATION
8359;
(d)
N.
A.
Meanwell,
J.
Med.
Chem.
2018,
Motivated by rapid advances in glycobiology, a series of
glycomimetics have been prepared that exploit the stability
advantages of C-glycosides and 2-fluorosugars over the native
systems. This study demonstrates that whilst the OBn → F
substitution at C2 is extremely well tolerated, the fluorinated
lactones more robust towards the addition of organometallic
reagents than the corresponding 2-deoxy lactones. The α-
selectivity observed for the 2-OBn and 2-F sugars can be
exploited in subsequent transformations. In this study, a series
of natural and non-natural product analogues have been
prepared in a stereoselective manner. Exploiting these systems
in the context of chemical biology will be the focus of future
efforts from this laboratory.
DOI:10.1021/acs.jmedchem.7b01788.
[12] H. Chenm, S. Viel, F. Ziarelli, L. Peng, Chem. Soc. Rev. 2013, 42,
7971-7982.
[13] (a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; (b)
S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320-330.
[15] The fluorinated lactone was prepared according to D. Waschke, Y.
Leshch, J. Thimm, U. Himmelreich, J. Thiem, Eur. J. Org. Chem. 2012,
948-959.
[16] (a) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic
Effects at Oxygen, Springer Verlag, New York, 1982; (b) C. Thiehoff, Y.
P. Rey, R. Gilmour, Isr. J. Chem. 2017, 57, 92-100.
Experimental Section
Full experimental details are provided in the supporting information.
Acknowledgements
This work was supported by the WWU Münster, the Deutsche
Forschungsgemeinschaft (DFG): “Cells in Motion, Cluster of
Excellence” ; and the European Research Council (ERC-2013-
StG Starter Grant to RG - Project number 336376-ChMiFluorS);
Initial Training Network, FLUOR21 (AS), funded by the FP7
Marie Curie Actions of the European Commission (FP7-
PEOPLE-2013-ITN-607787).
Keywords: carbohydrate • fluorine • glycosides • bioisostere •
natural products
[1]
a) D. B. Werz, R. Ranzinger, S. Herget, A. Adibekian, C-W. Lieth, P. H.
Seeberger, ACS Chem. Biol. 2007, 2, 685-691; b) C. R. Bertozzi, L. L.
Kiessling, Science 2001, 291, 2357-2364; c) D. H. Dube, C. R. Bertozzi,
Nat. Rev. 2005, 4, 477-488.
[2]
[3]
B. Ernst, J. L. Magnani, Nat. Rev. Drug Discov. 2009, 8, 661-667.
T. J. Kieser, N. Santschi, L. Nowack, G. Kehr, T. Kuhlmann, S. Albrecht,
R.
Gilmour,
ACS
Chemical
Neurosci.
2018,
DOI:
10.1021/acschemneuro.8b00002.
[4]
[5]
A. Sadurni, G. Kehr, M. Ahlqvist, H. Peilot Sjögren, C. Kankkonen, L.
Knerr, R. Gilmour, Chem. Eur. J. 2018, 24, 2832-2836.
A. R. Aguillón, A. Mascarello, N. D. Segretti, H. F. Z. de Azevedo, C. R.
W. Guimaraes, L. S. M. Miranda, R. O. M. A. de Souza, Org. Process
Res. Dev. 2018, DOI: 10.1021/acs.oprd.8b00017.
[6]
[7]
1495-1598.
S. Bera, B. Chatterjee, D. Mondal, RSC Adv. 2016, 6, 77212-77242.
[8]
[9]
C. Bucher, R. Gilmour, Angew. Chem. Int. Ed. 2010, 49, 8724-8728.
I. P. Street, J. B. Kempton, S. G. Withers, Biochemistry 1992, 31, 9970-
9978.
[10] (a) C. Bucher, R. Gilmour, Synlett 2011, 1043-1046; (b) E. Durantie, C.
Bucher, R. Gilmour, Chem. Eur. J. 2012, 18, 8208-8215; (c) N.
Santschi, R. Gilmour, Eur. J. Org. Chem. 2015, 32, 6983-6987; (d) N.
Aiguabella, M. C. Holland, R. Gilmour, Org. Biomol. Chem. 2016, 14,
5534-5538.
[11] (a) D. O’Hagan, J. Fluorine Chem. 2010, 131, 1071-1081; (b) I. Ojima,
J. Org. Chem. 2013, 78, 6358-6383; (c) E. P. Gillis, K. J. Eastman, M.
D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-
This article is protected by copyright. All rights reserved.