Journal of the American Chemical Society
Page 8 of 9
denote aromatic resonances. (F) Time traces of the conversion of α into ω complexes of (1)2 on rods 2 (
+
), 8 (
ꢀ
), 9 (
ꢂ
), 10 (
+
) and 11 ( );
ꢃ
unfoldingꢀrefolding of (1)2 from rod 12 to 15 (ꢀ
). Concentration of host on each station was assessed by 1H NMR through the integration
1
of the amide resonances of the double helix. (G) Schematic representation of the overcoming of a bulky obstacle by a double helix through
an unwindingꢀrewinding mechanism.
2
3
4
5
The authors declare no competing financial interest.
CONCLUSION
6
7
8
Our results demonstrate how a clear sequence of events can be
designed in a complex supramolecular system by exploiting
ACKNOWLEDGMENT
This work was supported by the China Scholarship Council (preꢀ
doctoral fellowship to X.W.) and by the European Research
Council under the European Union’s Seventh Framework Proꢀ
gramme (grant agreement no. ERCꢀ2012ꢀAdGꢀ320892, postꢀ
doctoral fellowship to B.W.). The authors thank Brice Kauffmann
(IECBꢀUMS 3033) for his help during data collection and resoluꢀ
tion of the crystal structures.
the different time scales on which each of these events takes
place. The antiꢀparallel form of dimer (1)2 was isolated by
precipitation and then trapped in solution in foldaxane strucꢀ
tures upon binding to rodꢀlike guests before the parallel form
of (1)2 had time to appear. Rodꢀlike guest binding can be made
to occur selectively through the kinetically favored less hinꢀ
dered end of the rod to produce a foldaxane on the first bindꢀ
ing station, even though thermodynamically preferred binding
stations may be available in the system. Once threading of the
rod into (1)2 is achieved, sliding of (1)2 along the rod takes
place at rates substantially faster than helix dissociation and
reꢀassociation through an unwindingꢀrewinding mechanism.
The sliding direction along the rod can be biased by installing
a gradient of binding stations of increasing thermodynamic
stability. Along the sliding path, small barriers can be installed
such as long segments deprived of binding stations that do not
significantly hamper motion. However, if a sufficiently large
barrier is placed on the rod, sliding is blocked at the binding
station that precedes the barrier and a slower dissociation and
reꢀassociation through an unwindingꢀrewinding mechanism is
imposed for (1)2 to reach a thermodynamically more favorable
station placed further on the rod.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) (a) Mathias, J. P.; Seto, C. T.; Simanek, E. E.; Whitesides, G. M. J.
Am. Chem. Soc. 1994, 116, 1725–1735. (b) Prins, L. J.; De Jong, F.;
Timmerman, P.; Reinhoudt, D. N. Nature 2000, 408, 181–184. (c)
Tashiro, S.; Tominaga, M.; Kusukawa, T.; Kawano, M.; Sakamoto,
S.; Yamaguchi, K.; Fujita M. Angew. Chem. Int. Ed. 2003, 42, 3267–
3270. (d) Badjic, J. D.; Cantrill, S. J.; Stoddart, J. F. J. Am. Chem.
Soc. 2004, 126, 2288–2289. (e) Lohr, A.; Lysetska, M.; Würthner, F.
Angew. Chem. Int. Ed. 2005, 44, 5071–5074. (f) Oshikiri, T.;
Takashima, Y.; Yamaguchi, H.; Harada A. J. Am. Chem. Soc. 2005,
127, 12186–12187. (g) Mukhopadhyay, P.; Zavalij, P. Y.; Isaacs L. J.
Am. Chem. Soc. 2006, 128, 14093–14102. (h) de Greef, T. F. A.;
Ligthart, G. B. W. L.; Lutz, M.; Spek, A. L.; Meijer, E. W.; Sijbesma,
R. P. J. Am. Chem. Soc. 2008, 130, 5479–5486. (i) Cangelosi, V. M.;
Carter, T. G.; Zakharov, L. N.; Johnson, D. W. Chem. Commun. 2009,
5606–5608. (j) Chapin, J. C.; Kvasnica, M.; Purse, B. W. J. Am.
Chem. Soc. 2012, 134, 15000−15009. (k) Gan, Q.; Ferrand, Y.;
Chandramouli, N.; Kauffmann, B.; Aube, C.; Dubreuil, D.; Huc, I. J.
Am. Chem. Soc. 2012, 134, 15656–15659. (l) Danylyuk, O.; Fedin, V.
P.; Sashuk, V. Chem. Commun., 2013, 49, 1859−1861.
These various kinetically controlled pathways illustrate the
possible error correction mechanisms in the formation of mulꢀ
tiꢀfoldaxanes from the loading of several foldamer helices onto
multistation rods.9c Further elaboration of controlled oriented
foldaxane motions include the design of helical systems havꢀ
ing different ends that can form a foldaxane only by threading
the rod through one end and not the other. Such foldaxanes
would thus have a front that can move towards one extremity
of a rod and a back that can move towards the other extremity
of the rod. Progress along these is currently being made in our
laboratories and will be reported in due course.
(2) ErbasꢀCakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A.
L. Chem. Rev. 2015, 115, 10081–10206.
(3) Vale, R. D.; Reese, T. S.; Sheetz, M. P. Cell 1985, 42, 39−50.
(4) For recent reviews on artificial molecular walkers see: (a) von
Delius, M.; Leigh D. A. Chem Soc. Rev. 2011, 40, 3656–3676. (b)
Pan, J.; Li, F.; Cha, T. G.; Chen, H.; Choi, J. H. Curr. Opin. Bio-
technol. 2015, 34, 56ꢀ64.
(5) (a) Sherman, W. B.; Seeman N. C. Nano Letters 2004, 4, 1203–
1207. (b) Kwon, K.ꢀY.; Wong, K. L.; Pawin, G.; Bartels, L.;
Stolbov, S.; Rahman T. S. Phys. Rev. Lett. 2005, 95, 166101–
116104. (c) von Delius, M.; Geertsema, E. M.; Leigh, D. A.; Tang,
D. T. D. J. Am. Chem. Soc. 2010, 132, 16134−16145. (d) von
Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010, 2,
96−101. (e) Barrell, M. J.; Campana, A. G.; von Delius, M.;
Geertsema, E. M.; Leigh D. A. Angew. Chem. Int. Ed. 2011, 50,
285−290. (f) Perl, A.; GomezꢀCasado, A.; Thompson, D.; Dam, H.
H.; Jonkheijm, P.; Reinhoudt, D. N.; Huskens, J. Nat. Chem. 2011,
3, 317−322. (g) Kovaricek, P.; Lehn, J.ꢀM. J. Am. Chem. Soc. 2012,
134, 9446−9455. (h) Campana, A. G.; Carlone, A.; Chen, K.;
Dryden, D. T. F.; Leigh, D. A.; Lewandowska, U.; Mullen K. M.
Angew. Chem. Int. Ed. 2012, 51, 5480−5483. (i) Campana, A. G.;
Leigh, D. A.; Lewandowska U. J. Am. Chem. Soc. 2013, 135,
8639−8645. (j) Beves, J. E.; Blanco, V.; Blight, B. A.; Carrillo, R.;
D’Souza, D. M.; Howgego, D.; Leigh, D. A.; Slawin, A. M. Z.;
Symes M. D. J. Am. Chem. Soc. 2014, 136, 2094−2100. (k) Pulcu,
G. S.; Mikhailova, E.; Choi, L. S.; Bayley H. Nat. Nanotechnol.
2014, 10, 76−83. (l) Kovaricek, P.; Lehn, J.ꢀM. Chem. Eur. J. 2015,
21, 9380−9384.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI:
Experimental details for synthetic procedures, spectroscopic data
(PDF).
Crystallographic information files for (1)2, (1)2⊃12, (1)2⊃13, and
(1)4⊃2 (CIF).
AUTHOR INFORMATION
Corresponding Authors
*y.ferrand@iecb.uꢀbordeaux.fr
*i.huc@iecb.uꢀbordeaux.fr
(6) (a) Harada, A.; Li, J.; Kamachi M. Nature 1992, 356, 325–327. (b)
Herrmann. W.; Keller, B.; Wenz G. Macromolecules 1997, 30,
4966–4972.
(7) (a) Coumans, R. G. E.; Elemans, J. A. A. W.; Nolte, R. J. M.;
Rowan. A. E. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 19647–
19651; (b) Deutman, A. B. C.; Monnereau, C. ; Elemans, J. A. A.
Present Address
† Department of Chemical Technology of Drugs, Poznan Univerꢀ
sity of Medical Sciences, Grunwaldzka 6, 60ꢀ780 Poznan, Poland.
Notes
ACS Paragon Plus Environment