ACS Catalysis
Page 4 of 6
This work was supported by the Ministry of Education of Singaꢀ
pore (Rꢀ143ꢀ000ꢀA07ꢀ112). C. W. thanks Dr. Jiayu Liao for the
initial studies on the hydrosilylation reaction of 1,4ꢀenyne.
deuterium atoms of 2e'ꢀd2 and 2v'ꢀd2 are located at the αꢀ
vinylic carbon and silicon of these vinylsilanes (Scheme 2D
and 2E). The results of these deuteriumꢀlabeling experiments
suggest that this Coꢀcatalyzed hydrosilylation of alkynes proꢀ
ceed through a cisꢀaddition of SiꢀH to an alkyne group.
1
2
3
REFERENCES
4
5
6
7
8
9
(1) (a) Blumenkopf, T. A.; Overman, L. E. Vinylsilaneꢀ and alꢀ
kynylsilaneꢀterminated cyclization reactions. Chem. Rev. 1986, 86,
857ꢀ873. (b) Langkopf, E.; Schinzer, D. Uses of SiliconꢀContaining
Compounds in the Synthesis of Natural Products. Chem. Rev. 1995,
95, 1375ꢀ1408. (c) Fleming, I.; Barbero, A.; Walter, D. Stereochemiꢀ
cal Control in Organic Synthesis Using SiliconꢀContaining Comꢀ
pounds. Chem. Rev. 1997, 97, 2063ꢀ2192.
(2) (a) Marciniec, B.; Gulinski, J.; Urbaniac, W.; Kornetka, Z. W.
Comprehensive Handbook on Hydrosilylation; Pergamon: Oxford,
U.K., 1992. (b) Marciniec, B. Applied Homogeneous Catalysis with
Organometallic Compounds; Wiley−VCH: Weinheim, Germany,
1996. (c) Marciniec, B.; Maciejewski, H.; Pietraszuk, C.; Pawluć, P.
In Hydrosilyaltion: A Comprehensive Review on Recent Advances;
Marciniec, B., Ed.; Springer: Berlin, 2009; pp 3–51.
Based on the precedent of cobaltꢀcatalyzed hydrosilylation
of unsaturated molecules9c,10i, and the results of the series of
deuterium labeling experiments, we propose a catalytic cycle
depicted in Scheme 3 for this Coꢀcatalyzed alkyne hydrosilylaꢀ
tion.16 The activation of Co(acac)2 with hydrosilane in the
presence of dpephos generates a cobalt hydride species (L)Coꢀ
H. 1,2ꢀMigratory insertion of alkynes into this CoꢀH intermeꢀ
diate produces a vinylcobalt species (I), which turns over with
hydrosilane to afford the (E)ꢀvinylsilane products and regenerꢀ
ate the catalytically active cobalt hydride (L)CoꢀH.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) West, R. Comprehensive Organometallic Chemistry II;
Elsevier: Amsterdam, 1995; Vol. 2, p77.
(4) For selected examples: (a) Trost, B. M.; Ball, Z. T. Markovniꢀ
kov Alkyne Hydrosilylation Catalyzed by Ruthenium Complexes. J.
Am. Chem. Soc. 2001, 123, 12726ꢀ12727. (b) Kawanami, Y.; Sonoda,
Y.; Mori, T.; Yamamoto, K. RutheniumꢀCatalyzed Hydrosilylation of
1ꢀAlkynes with Novel Regioselectivity. Org. Lett. 2002, 4, 2825ꢀ
2827. (c) Trost, B. M.; Ball, Z. T. Alkyne Hydrosilylation Catalyzed
by a Cationic Ruthenium Complex:ꢁ Efficient and General Trans Adꢀ
dition. J. Am. Chem. Soc. 2005, 127, 17644ꢀ17655. (d) Menozzi, C.;
Dalko, P. I.; Cossy, J. Hydrosilylation of Terminal Alkynes with Alꢀ
kylidene Ruthenium Complexes and Silanes. J. Org. Chem. 2005, 70,
10717ꢀ10719. (e) Wang, P.; Yeo, X.ꢀL.; Loh, T.ꢀP. CopperꢀCatalyzed
Highly Regioselective Silylcupration of Terminal Alkynes to Form αꢀ
Vinylsilanes. J. Am. Chem. Soc. 2011, 133, 1254ꢀ1256.
(5) For selected examples: (a) Na, Y.; Chang, S. Highly Stereoseꢀ
lective and Efficient Hydrosilylation of Terminal Alkynes Catalyzed
by [RuCl2(pꢀcymene)]2. Org. Lett. 2000, 2, 1887ꢀ1889. (b) Mori, A.;
Takahisa, E.; Yamamura, Y.; Kato, T.; Mudalige, A. P.; Kajiro, H.;
Hirabayashi, K.; Nishihara, Y.; Hiyama, T. Stereodivergent Syntheses
of (Z)ꢀ and (E)ꢀAlkenylsilanes via Hydrosilylation of Terminal Alꢀ
kynes Catalyzed by Rhodium(I) Iodide Complexes and Application to
SiliconꢀContaining Polymer Syntheses. Organometallics 2004, 23,
1755ꢀ1765. (c) Trost, B. M.; Ball, Z. T. Alkyne Hydrosilylation Cataꢀ
lyzed by a Cationic Ruthenium Complex:ꢁ Efficient and General
Trans Addition. J. Am. Chem. Soc. 2005, 127, 17644ꢀ17655. (d)
Sridevi, V. S.; Fan, W. Y.; Leong, W. K. Stereoselective Hydrosilylaꢀ
tion of Terminal Alkynes Catalyzed by [Cp*IrCl2]2:ꢁ A Computational
and Experimental Study. Organometallics 2007, 26, 1157ꢀ1160. (e)
Iglesias, M.; PerezꢀNicolas, M.; Miguel, P. J. S.; Polo, V.; Fernandezꢀ
Alvarez, F. J.; PerezꢀTorrente, J. J.; Oro, L. A. A synthon for a 14ꢀ
Scheme 3. The Proposed Catalytic Cycle for this Co-
Catalyzed Hydrosilylation of Alkynes
In summary, we have developed a convenient and effective
protocol for the synthesis of (E)ꢀvinylsilanes through a cobalt
catalyzed antiꢀMarkovnikov hydrosilylation of terminal alꢀ
kynes. The cobalt catalysts are generated in situ from bench
stable Co(acac)2 and dpephos or xantphos ligands, and are
activated by the reaction with hydrosilane substrates. A broad
range of alkynes containing either aromatic or aliphatic subꢀ
stituents underwent this hydrosilylation reaction to afford (E)ꢀ
vinylsilanes in high isolated yields with high regioꢀ and stereꢀ
oselectivity. In addition, this reaction could be conducted on a
gram scale without the loss of selectivity with a reduced cataꢀ
lyst loading (0.5 mol %). Thus, this Coꢀcatalyzed hydrosilylaꢀ
tion provides a general and practical approach to prepare funcꢀ
tionalized (E)ꢀvinylsilanes with commercially available abunꢀ
dant baseꢀmetal catalysts.
ASSOCIATED CONTENT
Supporting Information
Experimental details, characterization data, and copies of NMR
spectra of all compounds. This material is available free of charge
electron Ir(iii) species: catalyst for highly selective
βꢀ(Z) hydrosilylaꢀ
tion of terminal alkynes. Chem. Commun. 2012, 48, 9480ꢀ9482. (f)
Gao, R.; Pahls, D. R.; Cundari, T. R.; Yi, C. S. Experimental and
Computational Studies of the RutheniumꢀCatalyzed Hydrosilylation
of Alkynes: Mechanistic Insights into the Regioꢀ and Stereoselective
Formation of Vinylsilanes. Organometallics 2014, 33, 6937ꢀ6944.
(6) For selected examples: (a) Takeuchi, R.; Tanouchi, N. Comꢀ
plete reversal of stereoselectivity in rhodium complexꢀcatalysed hyꢀ
drosilylation of alkꢀ1ꢀyne. J. Chem. Soc., Chem. Commun. 1993,
1319ꢀ1320. (b) Takeuchi, R.; Tanouchi, N. Solventꢀcontrolled stereꢀ
oselectivity in the hydrosilylation of alkꢀ1ꢀynes catalysed by rhodium
complexes. J. Chem. Soc., Perkin Trans. 1 1994, 2909ꢀ2913. (c) Blug,
M.; Le Goff, X.ꢀF.; Mézailles, N.; Le Floch, P. A 14ꢀVE Platinum(0)
Phosphabarrelene Complex in the Hydrosilylation of Alkynes. Or-
ganometallics 2009, 28, 2360ꢀ2362. (d) OrtegaꢀMoreno, L.; Peloso,
R.; Maya, C.; Suarez, A.; Carmona, E. Platinum(0) olefin complexes
of a bulky terphenylphosphine ligand. Synthetic, structural and reacꢀ
tivity studies. Chem. Commun. 2015, 51, 17008ꢀ17011. (e) Moralesꢀ
Cerón, J. P.; Lara, P.; LópezꢀSerrano, J.; Santos, L. L.; Salazar, V.;
Álvarez, E.; Suárez, A. Rhodium(I) Complexes with Ligands Based
AUTHOR INFORMATION
Corresponding Author
*chmgsh@nus.edu.sg
Note
The authors declare no competing financial interest.
ACKNOWLEDGMENT
ACS Paragon Plus Environment