CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.0) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS
New Journal of Chemistry
ARTICLE TYPE
DOI: 10.1039/C5NJ00929D
were recorded on a Varian Unity Inova 300Nb spectrometer. 60 (tphpy) Ir(acac) (30nm, 8%)/ 4,7ꢀdiphenylꢀ1,10ꢀ phenanthroline
2
Elemental analysis (EA) was measured using an EA 1108
spectrometer. The low resolution mass spectra were measured
using a Jeol JMSꢀAX505WA spectrometer in EI and APCI mode
and a JMSꢀT100TD (AccuTOFꢀTLC) in positive ion mode. The
(Bphen)(30nm)/ lithium quinolate (Liq)(2nm)/ Al (100nm). The
current density ( ), luminance( ), LE, PE, and CIE chromaticity
coordinates of the OLEDs were measured with a Keithly 2400,
Chroma meter CSꢀ1000A. EL was measured using a Roper
J
L
5
0
5
0
UVꢀVis absorption and photoluminescence spectra of the newly 65 Scientific Pro 300i.
ꢀ
5
designed host materials were measured in a CH Cl solution (10
2
2
M) using a Shimadzu UVꢀ1650PC and AMINCOꢀBowman
Series 2 Luminescence Spectrometer. The ionization potentials
(or HOMO energy levels) of the compounds were measured
using a lowꢀenergy photoꢀelectron spectrometer (RikenꢀKeiki,
ACꢀ2). The energy band gaps were determined from the
intersection of the absorption and photoluminescence spectra.
The LUMO energy levels were estimated by subtracting the
energy band gap from the HOMO energy levels. The thermal
properties were measured by thermogravimetric analysis (TGA)
Acknowledgements
This research was supported by the Basic Science Research
Program through the NRF funded by the Ministry of Education,
Science and Technology (NRFꢀ2013R1A1A2A10008105).
1
1
2
7
0
Notes and references
a
Department of Chemistry, Sungkyunkwan University, Suwon, 440-746,
Korea. Tel: 82-031-290-7071; Fax: 82-031-290-7075;
E-mail: ssyoon@skku.edu
(
(
1
DTAꢀTGA, TAꢀ4000) and differential scanning calorimetry
b
Department of Information Display, Hongik University, Seoul, 121-791,
DSC) (Mettler Toledo; DSC 822) under N at a heating rate of
2
75
Korea. Tel: 82-2-320-1646; Fax: 82-2-3141-8928.;
E-mail: kimyk@hongik.ac.kr
o
0
C/min. A heatꢀcoldꢀheat method was used with an initial
o
heating rate of 10 C/min, rapidly quenchedꢀcooled in liquid
nitrogen, and finally heated at rate of 10 C/min.
o
1. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
Thompson, and S. R. Forrest, Nature 1998, 395, 151.
General Procedure for the Suzuki Cross-Coupling Reaction
80
2
3
D. F. O’Brien, M. A. Baldo, S. R. Forrest, and M. E. Thompson,
Appl. Phys. Lett. 1999, 74, 442.
K. Brunner, A. van Dijken, H. Börner, J. J. A. M. Bastiaansen, N. M.
M. Kiggen, and B. M. W. Langeveld, J. Am. Chem. Soc. 2004, 126,
6035.
2
ꢀBromoꢀ6ꢀmethylpyridine (1.0 mol) and the corresponding
boronic ester derivatives (1.2 mol), Pd(PPh3)4 (0.04 mol),
aqueous 2.0 M K CO (10.0 mol), Aliquat 336 (0.1 mol), and
2
5
2
3
85
4
S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato
Appl. Phys. Lett. 2003, 83, 569.
,
toluene were mixed in a flask, and heated under reflux for 2 h.
After the reaction was complete, the reaction mixture was
extracted with ethyl acetate and washed with water. The organic
5
6
I. Tanaka, Y. Tabata, and S. Tokito, Chem. Phys. Lett. 2004, 400, 86.
C. ꢀT. Chen, Y. Wei, J. ꢀS. Lin, M. V. R. K. Moturu, W. ꢀS. Chao, Y.
.
layer was dried with anhydrous MgSO and filtered with silica
ꢀT. Tao, and C. ꢀH. Chien., J. Am. Chem. Soc. 2006, 128, 10992.
4
3
0
gel. The solution was then evaporated. The crude product was 90 7. S. ꢀJ. Su, H. Sasabe, T. Takeda, and J. Kido, Chem. Mater. 2008, 20,
1
691.
recrystallized from CH Cl /EtOH.
2
2
8
9
.
.
Y.ꢀL. Liao, C.ꢀY. Lin, K.ꢀT. Wong, T.ꢀH. Hou, and W. ꢀY. Hung,
Org. Lett. 2007, 9, 4511.
K. Paul, W. Zhongbin, S. Berthold, T. Antoine, H. Ernst, C.
Jiangshan, M. Dongge, H. Hans, F. Johannes, and L. Daniel, Org
Electron. 2015, 17, 216.
9
9
2
-[4-(6-Methylpyridin-2-yl)phenyl]-9
H
-carbazole (1) : Yield =
3%. H NMR (300 MHz, CDCl3): δ ppm 8.19 (d, = 8.5 Hz,
H), 8.14 (d, = 7.8 Hz, 2H), 7.67ꢀ7.62 (m, 3H), 7.56 (d, = 7.6
= 7.8 Hz, 2H), 7.28 (t,
1
J
J
J
9
5
35
40
45
50
Hz, 1H), 7.47ꢀ7.45 (m, 2H), 7.40 (t,
.8 Hz, 2H), 7.11 (d, = 7.3 Hz, 1H), 2.65 (s, 3H); C NMR (75
MHz, CDCl ): δ ppm 158.9, 156.3, 141.0, 139.1, 138.4, 137.3,
J
J =
1
3
7
J
1
0. K. S. Yook and J. Y. Lee, J. Lumin. 2015, 161, 271.
3
11. H. Hong, W. Yixin, Z. Shaoqing, Y. Xiao, W. Lei, and Y. Chuluo, J.
Phys. Chem. C. 2012, 116, 19458.
1
2
28.8, 127.4, 126.3, 123.7, 122.2, 120.6, 120.3, 117.9, 110.1,
5.1; MS (EI+, m/z): 334 [M+]; Anal. calcd for C H N : C
2
4
18
2
100 12. G. H. Kim, R. Lampande, J. H. Kong, J. M. Lee, J. H. Kwon, J. K.
Lee, and J. H. Park, RSC. Adv. 2015, 5, 31282.
86.20, H 5.43, N 8.38. Found C 85.83, H 5.37, N 8.31.
-[9,9-Diethyl-7-(6-methylpyridin-2-yl)-9 -fluoren-2-yl]-9
carbazole (2) : Yield = 78%. H NMR (300 MHz, CDCl3): δ
ppm 8.19 (d, = 7.8 Hz, 2H), 8.09ꢀ8.06 (dd, = 1.5, 6.6 Hz, 1H),
.02 (s, 1H), 7.96 (d, = 3.6 Hz, 1H), 7.87 (d,
= 7.8 Hz, 1H), 105
7.69ꢀ7.60 (m, 2H), 7.56 (d, = 8.4 Hz, 2H), 7.44 (d, = 8.1 Hz,
H), 7.35ꢀ7.29 (m, 2H), 7.12 (d, = 6.9 Hz, 1H), 2.67(s, 3H),
.24ꢀ2.03(m, 4H), 0.49(t, = 7.2 Hz, 6H); C NMR (75 MHz,
9
H
H-
13. M.ꢀH. Tsai, H.ꢀW. Lin, H.ꢀC. Su, T.ꢀH. Ke, C. ꢀC. Wu, F.ꢀC. Fang,
Y.ꢀL. Liao, K.ꢀT. Wong, and C.ꢀI. Wu, Adv. Mater. 2006, 18, 1216.
14. Q. Gao, M. Luo, X. H. Sun, H. L. Tam, M. S. Wong, B. X. Mi, P. F.
Xia, K. W. Cheah, and C. H. Chen, Adv. Mater. 2009, 21, 688.
15. J. W. Yang and J. Y. Lee, Org Electron. 2015, 22, 74.
1
1
1
1
J
J
8
J
J
J
J
6. S. ꢀJ. Su, H. Sasabe, T. Takeda, and J. Kido, Chem. Mater. 2008, 20,
691–1693
7. H. Ye, D. Chen, M. Liu, S. ꢀJ Su, Y. ꢀF. Wang, C. ꢀC. Lo, A. Lien,
and J. Kido, Adv. Funct. Mater. 2014, 24, 3268.
8. S. Lamansky, P. Djurovich, D. Murphy, F. AbdelꢀRazzaq , H. E. Lee,
C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am.
Chem. Soc. 2001, 123, 4304.
9. W. ꢀY. Wong, C. ꢀL. Ho, Z. ꢀQ. Gao, B. ꢀX. Mi, C. ꢀH. Chen, K. ꢀW.
Cheah, and Z. Lin, Angew. Chem. Int. Ed. 2006, 45, 7800.
0. W. Jiang, L. Duan, J. Qiao, D. Zhang, G. Dong, L. Wang, and Y.
Qiu, J. Mater. Chem., 2010, 20, 6131.
4
2
J
1
3
1
J
CDCl ): δ ppm 158.8, 157.4, 152.7, 151.0, 141.7, 141.4, 140.8,
3
1
1
1
10
1
39.4, 137.2, 136.9, 126.7, 126.3, 123.7, 122.2, 121.8, 121.7,
121.4, 120.7, 120.4, 120.2, 118.0, 110.1, 56.9, 33.1, 25.2, 9.1;
MS (APCI+, m/z): 479 [M+]; Anal. calcd for C H N : C 87.83,
H 6.32, N 5.85. Found C 87.22, H 6.25, N 5.81.
3
5
30
2
1
2
2
15
Device fabrication and characterization
OLEDs using greenꢀlightꢀemitting molecules were fabricated by
ꢀ
7
1. H. Liu, W. Gao, K. Yang, B. Chen, S. Liu, and Y. Bai, Chem. Phys.
Lett., 2002, 352, 353.
55
vacuum (5×10 torr) thermal evaporation onto precleaned ITO
coated glass substrates. The Structure was as follows: ITO/ N,N’
diphenylꢀN,N’ꢀ(1ꢀnapthyl)ꢀ(1,1’ꢀphenyl)ꢀ4,4’ꢀdiamine (NPB)(50
ꢀ
20 22. J. W. Kang, S. H. Lee, H. D. Park, W. I. Jeong, K. M. Yoo,Y. S. Park,
and J. J. Kim, Appl. Phys. Lett., 2007, 90, 223508.
nm)/ 4,4’,4’’ꢀtris(
Nꢀcarbazole)triphenylamine (TcTa)(10nm)/ Phꢀ
osphorescent host materials: Green dopant material
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]