Paper
NJC
1
9
carbon atom that was bound to bromine. Finally, an acyclic
carbonate molecule was formed, which was converted to a cyclic
carbonate by intramolecular cyclization, releasing the original
catalyst for the next catalytic cycle. The increasing TOF from 1 to
2018, 57, 2695–2704; ( f ) D. Zhao, X. H. Liu, C. D. Zhu,
Y. S. Kang, P. Wang, Z. Z. Shi, Y. Lu and W. Y. Sun, Chem-
CatChem, 2017, 9, 4598–4606.
6 J. F. Wu, X. L. Li, L. Zhao, M. Guo and J. K. Tang, Inorg.
Chem., 2017, 56, 4104–4111.
20
3
is in line with the increasing Lewis acidity from La to Sm.
7
X. L. Tang, W. H. Wang, W. Dou, J. Jiang, W. S. Liu,
W. W. Qin, G. L. Zhang, H. R. Zhang, K. B. Yu and
L. M. Zheng, Angew. Chem., Int. Ed., 2009, 48, 3499–3502.
(a) J. Liang, Y. Q. Xie, X. S. Wang, Q. Wang, T. T. Liu,
Y. B. Huang and R. Cao, Chem. Commun., 2018, 54, 342–345;
Conclusions
8
In summary, a series of highly active tetranuclear lanthanide
clusters was synthesized and characterized. The unique structures
(
b) D. Y. Hong, Y. K. Wang, C. Serre, G. Ferey and J. S. Chang,
of these clusters provide catalytically active sites for CO
2
2
1
Adv. Funct. Mater., 2009, 19, 1537–1552; (c) W. Liu, J. Huang,
Q. Yang, S. Wang, X. Sun, W. Zhang, J. Liu and F. Huo,
Angew. Chem., Int. Ed., 2017, 56, 5512–5516.
J. Steinbauer, A. Spannenberg and T. Werner, Green Chem.,
2
0 D. Jiang, X. Yang, H. Chen, F. Wang, S. Wang, T. Zhu,
L. Zhang and S. Huang, Dalton Trans., 2019, 48, 2206–2212.
1 (a) V. Laserna, G. Fiorani, C. J. Whiteoak, E. Martin, E. Escudero-
Adan and A. W. Kleij, Angew. Chem., Int. Ed., 2014, 53,
conversion. 3 was selected as a representative efficient and
recyclable catalyst to illustrate the reaction of CO with different
2
2
2
substituted epoxides. In addition, cluster 3 can be recycled at
least 4 times without significant loss or structural damage.
These results provide new insights for designing lanthanide
9
017, 19, 3769–3779.
1
clusters as efficient CO conversion catalysts.
2
1
Conflicts of interest
1
0416–10419; (b) J. Langanke, L. Greiner and W. Leitner, Green
The authors declare no competing financial interests.
Chem., 2013, 15, 1173–1182; (c) C. J. Whiteoak, E. Martin,
E. Escudero-Adan and A. W. Kleij, Adv. Synth. Catal., 2013,
355, 2233–2239; (d) D. J. Darensbourg, Chem. Rev., 2007, 107,
Acknowledgements
2
388–2410.
This work was supported by the National Natural Science
Foundation of China (NSFC, Grant 21431002, 21871122,
1
1
1
1
2 Z. Zhou, C. He, J. Xiu, L. Yang and C. Duan, J. Am. Chem.
Soc., 2015, 137, 15066–15069.
3 P. Buchwalter, J. Rose and P. Braunstein, Chem. Rev., 2015,
1
4 X. H. Song, Y. F. Wu, D. H. Pan, R. P. Wei, L. J. Gao, J. Zhang
and G. M. Xiao, J. CO2 Util., 2018, 24, 287–297.
5 B. Xu, P. Wang, M. Lv, D. Yuan and Y. Yao, ChemCatChem,
2016, 8, 2466–2471.
21701070) and the Fundamental Research Funds for the Central
Universities (Grant No. lzujbky-2018-kb12).
15, 28–126.
References
1
(a) B. Weinert and S. Dehnen, Binary and Ternary, Struct.
Bonding, 2017, 174, 99–134; (b) V. Panwar and S. Lata, J. CO2 16 (a) H. Cheng, B. Zhao, Y. Yao and C. Lu, Green Chem., 2015,
Util., 2018, 24, 306–314.
17, 1675–1682; (b) Z. Zhao, J. Qin, C. Zhang, Y. Wang,
D. Yuan and Y. Yao, Inorg. Chem., 2017, 56, 4568–4575;
(c) Y. Xu, D. Yuan, Y. Wang and Y. Yao, Dalton Trans., 2017,
46, 5848–5855.
2
(a) W. Liu, T. Jiao, Y. Li, Q. Liu, M. Tan, H. Wang and L. Wang,
J. Am. Chem. Soc., 2004, 126, 2280–2281; (b) W. Yang, H. Tian,
J. Li, Y. Hui, X. He, J. Li, S. Dang, Z. Xie and Z. Sun, Chem. – Eur.
J., 2016, 22, 15451–15457; (c) J. Wu, L. Zhao, L. Zhang, X. Li, 17 Y. Xie, C. Lu, B. Zhao, Q. Wang and Y. Yao, J. Org. Chem.,
M. Guo, K. Annie and J. Tang, Angew. Chem., Int. Ed., 2016, 55, 2019, 84, 1951–1958.
15574–15578; (d) P. Zhang, L. Zhang, C. Wang, S. Xue, S. Lin and 18 L. Pan, X. Huang, J. Li, Y. Wu and N. Zheng, Angew. Chem.,
J. K. Tang, J. Am. Chem. Soc., 2014, 136, 4484–4487; (e) L. Wang,
Int. Ed., 2000, 39, 527–530.
R. L. Zhang, Q. X. Han, C. Xu, W. Chen, H. Yang, G. Gao, W. Qin 19 M. Shaik, J. Peterson and G. Du, Macromolecules, 2019, 52,
and W. Liu, Green Chem., 2018, 20, 5311–5317.
157–166.
D. Liu, G. Li, J. Liu, Y. Wei and H. Guo, ACS Appl. Mater. 20 (a) S. Kernbichl, M. Reiter, F. Adams, S. Vagin and B. Rieger,
3
4
5
Interfaces, 2018, 10, 22119–22129.
J. Am. Chem. Soc., 2017, 139, 6787–6790; (b) Y. L. Xiao, Z. Wang
and K. L. Ding, Chem. – Eur. J., 2005, 11, 3668–3678;
(c) D. R. Moore, M. Cheng, E. B. Lobkovsky and G. W. Coates,
J. Am. Chem. Soc., 2003, 125, 11911–11924.
C. Mart ´ı n, G. Fiorani and A. W. Kleij, ACS Catal., 2015, 5,
1353–1370.
(a) C. Gao, J. Ai, H. R. Tian, D. Wu and Z. M. Sun, Chem.
Commun., 2017, 53, 1293–1296; (b) J. Ai, F. Y. Chen, C. Y. Gao, 21 (a) R. Ma, L. N. He and Y. B. Zhou, Green Chem., 2016, 18,
H. R. Tian, Q. J. Pan and Z. M. Sun, Inorg. Chem., 2018, 57,
419–4426; (c) Y. Yang, C. Y. Gao, H. R. Tian, J. Ai, X. Min and
Z. M. Sun, Chem. Commun., 2018, 54, 1758–1761; (d) D. Zhao,
226–231; (b) J. Hu, J. Ma, Q. Zhu, Q. Qian, H. Han, Q. Mei and
B. Han, Green Chem., 2016, 18, 382–385; (c) M. Reiter, S. Vagin,
A. Kronast, C. Jandl and B. Rieger, Chem. Sci., 2017, 8, 1876–1882.
4
X. H. Liu, Z. Z. Shi, C. D. Zhu, Y. Zhao, P. Wang and W. Y. Sun, 22 (a) A. C. Deacy, C. B. Durr, J. A. Garden, A. J. P. White and
Dalton Trans., 2016, 45, 14184–14190; (e) D. Zhao, X. H. Liu,
J. H. Guo, H. J. Xu, Y. Zhao, Y. Lu and W. Y. Sun, Inorg. Chem.,
C. K. Williams, Inorg. Chem., 2018, 57, 15575–15583; (b) G. Trott,
J. A. Garden and C. K. Williams, Chem. Sci., 2019, 10, 4618–4628.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020