Table 2 Details of ion gels synthesized by route B
Ion gel codea
Copolymer usedb
Diamine usedc
Temp. (1C)
Ionic conductivityd (S cmꢁ1
)
IG11
IG12
IG13
IG14
P1
P2
P2
P2
XDA
HMD
DETA
XDA
70
6.249 ꢂ 10ꢁ4
7.734 ꢂ 10ꢁ4
9.288 ꢂ 10ꢁ4
5.011 ꢂ 10ꢁ4
RT
RT
70
a
b
[EMIM][TFSI] content B67.5%; Copolymer P1: (CCMA)43-(EG)7-(CCMA)43; Mn 16350 (calculated); Mn 20221 (GPC in DMF), PDI 1.18.
copolymer P2: (CCMA)47-(EG)13-(CCMA)47; Mn 18470 (calculated); Mn 22460 (GPC in DMF), PDI 1.19; 10 mol% relative to CC units of
c
d
polymer is used; HMD = hexamethylenediamine, DETA = diethylenetriamine and XDA = p-xylylenediamine; Measured at 23 1C.
various diamines produced transparent, flexible and self-standing
ion gels with high ionic conductivity (Table 2 and see ESI).w
Hexamethylenediamine (HMD) and diethylenetriamine
references therein.
Notes and references
1 T. Ueki and M. Watanabe, Macromolecules, 2008, 41, 3739, and
(DETA) produced ion gels at room temperature whereas
p-xylylenediamine (XDA) gave ion gels at 70 1C without the
need for reactions under nitrogen. It was also observed that
the homopolymer PCCMA can also yield ion gels using this
method. This is one of the simplest ways to prepare stable
ion gels.
2 (a) N. Winterton, J. Mater. Chem., 2006, 16, 4281 and references
therein; (b) B. Ochiai, Y. Satoh and T. Endo, J. Polym. Sci.,
Part A: Polym. Chem., 2009, 47, 4629.
3 (a) A. M. Christie, S. J. Lilley, E. Staunton, Y. G. Andreev and
P. G. Bruce, Nature, 2005, 433, 50; (b) Y. He and T. P. Lodge,
Macromolecules, 2008, 41, 167.
4 (a) J. H. Shin, W. A. Henderson and S. Passerini, Electrochem.
Commun., 2003, 5, 1016; (b) H. Shobukawa, H. Tokuda, S. Tabata
and M. Watanabe, Electrochim. Acta, 2004, 50, 305; (c) J. H. Shin,
W. A. Henderson and S. Passerini, J. Electrochem. Soc., 2005, 152,
A978.
5 (a) J. Huang, A. Riisager, P. Wasserscheid and R. Fehrmann,
Chem. Commun., 2006, 4027; (b) J. B. Tang, H. D. Tang,
W. L. Sun, H. Plancher, M. Radosz and Y. Q. Shen, Chem.
Commun., 2005, 3325.
The ionic liquid content of the ion gels synthesized by route
B was about 67.5% (Table 2). In general, these ion gels possess
higher ionic conductivity than the ion gels synthesized using
route A with similar IL content (see IG4 and IG5 in Table 1).
The higher ionic conductivity of ion gels synthesized by route
B may be due to the higher mobility of ionic species caused by
the presence of larger amounts of loosely bound IL in
the crosslinked gel. Various other factors which may also
contribute to this process i.e.: the more flexible nature of ion
gels obtained by route B as a result of the ring opening of rigid
cyclic carbonate units and the copolymeric nature of the ion
gel, the presence of less uniform crosslinking sites, the ordering
of IL induced by the physico-chemical interactions between
the block copolymer and the IL before crosslinking and so on.
Thermal stability of these gels is similar to the ion gels
synthesized by route A as is demonstrated by thermo-
gravimetric analysis (see ESI).w
In conclusion, we have synthesized a new class of flexible,
self-standing and highly ion conductive ion gels using novel
ionic liquid compatible cyclic carbonate network. Since cyclic
carbonate network and ionic liquids are highly compatible,
the gels formed were completely transparent and stable.
Most importantly, the use of the dual functional cyclic
carbonate methacrylate monomer for this purpose has
enabled the synthesis of ion gels in two different routes.
Incorporation of lithium salt to these ion gels dramatically
improved the ionic conductivity. Due to this highly compatible
nature, ionic liquids may be useful as plasticizer for
CCMA based polymers which are otherwise very brittle and
CCMA based polymers can be used as support materials for
small molecules or catalysts, if required, for other reactions
performed in IL.
6 P. G. Boswell, E. C. Lugert, J. Rabai, E. A. Amin and
P. Buhlmann, J. Am. Chem. Soc., 2005, 127, 16976.
7 (a) J. Lee, M. J. Panzer, Y. He, T. P. Lodge and C. D. Frisbie,
J. Am. Chem. Soc., 2007, 129, 4532; (b) J. H. Cho, J. Lee, Y. He,
B. Kim, T. P. Lodge and C. D. Frisbie, Adv. Mater., 2008, 20, 686;
(c) J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, J. M. Renn,
T. P. Lodge and C. D. Frisbie, Nat. Mater., 2008, 11, 900.
8 (a) M. Watanabe and S. Yanagida, Chem. Commun., 2005, 740;
(b) R. Kawano and M. Watanabe, Chem. Commun., 2005, 2107;
(c) R. Kawano, M. K. Nazeeruddin, A. Sato, M. Gratzel and
M. Watanabe, Chem. Commun., 2005, 2107.
9 (a) M. A. Lligshirm, S. K. Spear, R. Subramanian, J. D. Holbrey,
J. G. Huddleston and R. D. Rogers, Chem. Mater., 2004, 16, 3091;
(b) M. A. B. H. Susan, T. Kaneko, A. Noda and M. Watanabe,
J. Am. Chem. Soc., 2005, 127, 4976; (c) K. Hanabusa, H. Fukui,
M. Suzuki and H. Shirai, Langmuir, 2005, 21, 10383.
10 (a) Y. He and T. P. Lodge, Chem. Commun., 2007, 2732; (b) Y. He,
P. G. Boswell, P. Buhlmann and T. P. Lodge, J. Phys. Chem. B,
2007, 111, 4645; (c) A. Noro, Y. Matsushita and T. P. Lodge,
Macromolecules, 2008, 41, 5839.
11 S. Seki, M. A. B. H. Susan, T. Kaneko, A. Noda and
M. Watanabe, J. Phys. Chem., 2005, 109, 3886.
12 (a) M. A. Neouze, J. L. Bideau, P. Guveau, S. Bellayer and
A. Vioux, Chem. Mater., 2006, 18, 3931; (b) K. Matsumoto
and T. Endo, Macromolecules, 2008, 41, 6981; (c) K. Matsumoto and
T. Endo, Macromolecules, 2008, 42, 4580.
13 (a) J. M. Tarascon and M. Armand, Nature, 2001, 414, 359;
(b) F. B. Dias, L. Plomp and J. B. J. Veldhuis, J. Power Sources,
2000, 88, 169; (c) J. H. Golden, B. G. M. Chew, D. B. Zax,
F. J. DiSalvo, J. M. J. Frechet and J. M. Tarascon, Macromole-
cules, 1995, 28, 3468; (d) J. Britz, W. H. Meyer and G. Wegner,
Macromolecules, 2007, 40, 7558.
14 Z. Bai, Y. He and T. P. Lodge, Langmuir, 2008, 24, 5284.
15 (a) A. Steblynko, W. Choi, F. Sanda and T. Endo, J. Polym. Sci.,
Part A: Polym. Chem., 2000, 38, 2375; (b) D. C. Webster, Prog.
Org. Coat., 2003, 47, 77.
This work was supported by the Science and Engineering
Research council of A*STAR (Agency for Science, Technology
and Research), Singapore. We thank Mr H. Yu and Dr T.
Zhiqun for their assistance during ion gel characterization.
16 S. Jana, H. Yu, A. Parthiban and C. L. L. Chai, manuscript
submitted to J. Polym. Sci.: Part A: Polym. Chem.
ꢀc
This journal is The Royal Society of Chemistry 2010
1490 | Chem. Commun., 2010, 46, 1488–1490