5.0 mL. The pD can now be adjusted to a higher value with 12 M NaOD in D2O using capillary tubes
1
without changing the volume significantly. Again, 0.6 mL is placed in a NMR tube, and the H NMR
1
spectrum recorded. By repeating this procedure, H NMR spectra covering the pD range 1-12 may be
recorded. 1H NMR spectra of the samples were recorded within 3 hours after preparation using 40 scans per
spectrum. DSS (0.5 mM) is used as internal standard and the largest peak arising from DSS is referenced at
0.00 ppm. DSS is preferred to the readily available solvent peak HDO because of the narrow linewidth and
chemical shift insensitivity to pH in the range 2 – 11.17 pD values are calculated by adding 0.40 units18 to the
pH meter reading, obtained from a standard pH-meter calibrated to measure pH in aqueous solutions. One
of the alkaline samples was titrated to an acidic pD. The spectrum proved identical to that recorded for the
acidic range demonstrating that the equilibrium is reversible.
REFERENCES AND NOTES
†
G. Houen, C. Struve, R. Søndergaard, T. Friis, U. Anthoni, P. H. Nielsen, and C. Christophersen
(2003) Manuscript in preparation.
1. (a) F. D. King, J. Chem. Soc., Perkin Trans. 1, 1986, 447; (b) A. Wohl, K. Schäfer, and A. Thiele, Ber.
Deutsch. Chem. Ges., 1905, 38, 4157; (c) C. Schöpf and F. Oechler, Liebigs Ann. Chem., 1936, 523, 1;
(d) T. Asakura, K. Takada, Y. Ikeda, and M. Matsuda, Jikeikai Med. J., 1988, 35, 23; (e) R. Federico,
A. Cona, R. Angelini, M. E. Schinina, and A. Giartosio, Phytochemistry, 1990, 29, 2411;
(f) H. M. A. Awal, T. Kinoshita, I. Yoshida, M. Doe, and E. Hirasawa, Phytochemistry, 1997, 44, 997.
2. G. Grue-Sørensen and I. D. Spencer, Can. J. Chem., 1982, 60, 643.
3. U. Sankawa, H. Noguchi, T. Hashimoto, and Y. Yamada, Chem. Pharm. Bull., 1990, 38, 2066.
4. S. Jalkanen and M. Salmi, The EMBO Journal, 2001, 20, 3893.
5. (a) D. C. Robacker, A. B. Demilo, and D. J. Voaden, J. Chem. Ecology, 1997, 23, 1263; (b) J. E.
Amoore, L. J. Forrester, and R. G. Butterfly, J. Chem. Ecology, 1975, 1, 299.
6. (a) W. Ambroziak and R. Pietruszko, J. Biol. Chem., 1991, 266, 13011; (b) M. Sebela, I. Frébort,
K. Lemr, F. Brauner, and P. Pec, Arch. Biochem. Biohys., 2000, 384, 88.
7. (a) T. A. Smith, S. J. Crooker, and R. S. T. Loeffler, Phytochemistry, 1986, 25, 683; (b) J. D. Baker,
R. R. Heath, and J. G. Millar, J. Chem. Ecology, 1992, 18, 1595.
8. Y. Nomura, K. Ogawa, Y. Takeuchi, and S. Tomoda, Chem. Lett., 1977, 693.
9. (a) H. Poisel, Monatsh. Chem., 1978, 109, 925; (b) P. J. Parsons, B. Karadogan, and J. A. Macritchie,
Synlett, 2001, 257; (c) M. Mure, S. Itoh, and Y. Ohshiro, Chem. Lett., 1989, 1491.
10. (a) S. Maeda, H. Matsushita, Y. Mikami, and T. Kisaki, Agric. Biol. Chem., 1980, 44, 1643;
(b) S. Brandänge, L. Lindblom, Å. Pilotti, and B. Rodriguez, Acta Chem. Scand., 1983, B37, 617.