Communication
have half-lives ranging from 1 to 2 days. Thus, the independent
investigation of both isomeric states of cross-linked peptides is
feasible.
Keywords: Glycoconjugates · Protein modifications ·
Bioorthogonality · Photochemistry
To estimate the effect of azobenzene derivatives 5, 7, 14, and
21 on the conformational properties of cross-linked peptides or
proteins, the change in their end-to-end distances upon isom-
erization were monitored by using molecular dynamics simula-
tions (see the Supporting Information). The end-to-end dis-
tance distributions are collected in Table 2. The most probable
end-to-end distances of the E isomers varies from about 15 to
about 18 Å. The respective Z isomers show a more complex
distribution with the most probable distances varying from
around 8 to around 15 Å. The separation of the distance distri-
butions between the E and Z states is characteristic for the
individual cross-linkers.
[1] a) F. Bonardi, G. London, N. Nouwen, B. L. Feringa, A. J. M. Driessen,
Angew. Chem. Int. Ed. 2010, 49, 7234–7238; Angew. Chem. 2010, 122,
7392–7396; b) A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422–
4437; c) J. Rappsilber, J. Struct. Biol. 2011, 173, 530–540; d) A. Mourot, T.
Fehrentz, D. Bautista, D. Trauner, R. Kramer, Nat. Methods 2012, 9, 396–
402; e) S. A. Slavoff, A. Saghatelian, Nat. Biotechnol. 2012, 30, 959–961;
f) C. S. McKay, M. G. Finn, Chem. Biol. 2014, 21, 1075–1101; g) C. Hopp-
mann, V. K. Lacey, G. V. Louie, J. Wei, J. P. Noel, L. Wang, Angew. Chem.
Int. Ed. 2014, 53, 3932–3936; Angew. Chem. 2014, 126, 4013–4017; h) M.
Díaz-Lobo, J. Garcia-Amorós, I. Fita, D. Velasco, J. J. Guinovarta, J. C. Ferrer,
Org. Biomol. Chem. 2015, 13, 7282–7288; i) T. Podewin, M. S. Rampp, I.
Turkanovic, K. L. Karaghiosoff, W. Zinth, A. Hoffmann-Röder, Chem. Com-
mun. 2015, 51, 4001–4004.
[2] a) G. A. Woolley, Acc. Chem. Res. 2005, 38, 486–493; b) W. Szymanski,
J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev.
2013, 113, 6114–6178; c) S. Samanta, A. Babalhavaeji, M. Dong, G. A.
Woolley, Angew. Chem. Int. Ed. 2013, 52, 14127–14130; Angew. Chem.
2013, 125, 14377–1480.
Table 2. Distance calculations for azobenzene derivatives 5, 7, 14, and 21.
Azobenzene
derivative
Config. Most probable end-to-end
end distance [Å][a]
Range of end-to-end
distances [Å][a]
[3] A. Müller, H. Kobarg, V. Chandrasekaran, J. Gronow, F. D. Sönnichsen, T. K.
Lindhorst, Chem. Eur. J. 2015, 21, 13723–13731.
5
5
7
7
14
14
21
21
E
Z
E
Z
E
Z
E
Z
16.7
8.4
10.5–17.8
3.1–14.6
10.1–19.5
4.6–18.0
9.7–21.1
5.1–19.8
7.7–19.8
3.0–18.8
[4] a) C. Hoppmann, P. Schmieder, N. Heinrich, M. Beyermann, ChemBioChem
2011, 12, 2555–2559; b) M. A. Kienzler, A. Reiner, E. Trautman, S. Yoo, D.
Trauner, E. Y. Isacoff, J. Am. Chem. Soc. 2013, 135, 17683–17686; c) C.
Hoppmann, I. Maslennikov, S. Choe, L. Wang, J. Am. Chem. Soc. 2015,
137, 11218–11221; d) M. Díaz-Lobo, J. Garcia-Amorós, I. Fita, D. Velasco,
J. J. Guinovarta, J. C. Ferrer, Org. Biomol. Chem. 2015, 13, 7282–7288.
[5] a) C. R. Becer, R. Hoogenboom, U. S. Schubert, Angew. Chem. Int. Ed.
2009, 48, 4900–4908; Angew. Chem. 2009, 121, 4998–5006; b) A. Don-
doni, A. Marra, Chem. Soc. Rev. 2012, 41, 573–586.
17.4
14.8
17.8
15.5
15.1
11.3
[a] The distances were calculated between the terminal allyl group carbon
atom and the quaternary carbon atom of the propargyl group (for 5 and 14),
the terminal sulfhydryl group and the quaternary carbon atom of the prop-
argyl group (for 7), and the terminal allyl group carbon atom and the CH2N
group of the azido group (for 21).
[6] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem.
Int. Ed. 2002, 41, 2596–2599; Angew. Chem. 2002, 114, 2708–2711; b) M.
Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952–3015.
[7] J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev. 2010, 39, 1272–1279.
[8] a) E. Saxon, C. R. Bertozzi, Science 2000, 287, 2007–2010; b) S. S.
van Berkel, M. B. van Eldijk, J. C. M. van Hest, Angew. Chem. Int. Ed. 2011,
50, 8806–8827; Angew. Chem. 2011, 123, 8968–8989.
Conclusions
[9] a) C. Hoppmann, R. Kühne, M. Beyermann, Beilstein J. Org. Chem. 2012,
8, 884–889; b) C. Hoppmann, V. K. Lacey, G. V. Louie, J. Wei, J. P. Noel, L.
Wang, Angew. Chem. Int. Ed. 2014, 53, 3932–23936; Angew. Chem. 2014,
126, 4013–4017; c) C. Hoppmann, I. Maslennikov, S. Choe, L. Wang, J.
Am. Chem. Soc. 2015, 137, 11218–11221; d) P. Gorostiza, M. Volgraf, R.
Numano, S. Szobota, D. Trauner, E. Y. Isacoff, Proc. Natl. Acad. Sci. USA
2007, 104, 10865–10870.
[10] V. Chandrasekaran, E. Johannes, H. Kobarg, F. D. Sönnichsen, T. K. Lind-
horst, ChemistryOpen 2014, 3, 99–108.
[11] V. Chandrasekaran, Th. K. Lindhorst, Chem. Commun. 2012, 48, 7519–
7521.
[12] J. Mo, D. Eom, E. Lee, P. H. Lee, Org. Lett. 2012, 14, 3684–3687.
[13] M. Becker, F. Lin, WO2015048728 (A1), 2015.
[14] a) S. S. Ghosh, P. M. Kao, A. W. McCue, H. L. Chappelle, Bioconjugate
Chem. 1990, 1, 71–76; b) S. Ravi, V. R. Krishnamurthy, J. M. Caves, C. A.
Haller, E. L. Chaikof, Acta BioMater. 2012, 8, 627–635.
In conclusion, we synthesized bifunctionalized (glyco)azobenz-
ene derivatives in which alkyne–alkene, alkyne–sulfhydryl, and
alkene–azido reaction pairs were combined for bioorthogonal
cross-linking of peptides and proteins. Hence, we combined
variable ligation chemistries and varied the distances between
the respective functional groups in both isomeric states (E/Z).
All synthesized representatives of these hetero-bifunctional
cross-linker molecules have favorable photochromic properties
and should thus be tested in the photoswitching of the form
and function of peptides and proteins. We hope to inspire cor-
responding studies with our work, as the introduced molecules
can now be readily accessed and varied according to the syn-
thetic pathways reported by us.
[15] L. Möckl, A. Müller, C. Bräuchle, T. K. Lindhorst, Chem. Commun. 2016,
52, 1254–1257.
[16] C.-W. T. Chang, Y. Hui, B. Elchert, J. Wang, J. Li, R. Rai, Org. Lett. 2002, 4,
4603–4606.
[17] E. Hardegger, R. M. Montavon, Helv. Chim. Acta 1946, 29, 1199–1203.
Acknowledgments
The authors thank the Deutsche Forschungsgemeinschaft
(DFG), collaborative network SFB 677, for financial support and
Prof. Dr. F. D. Sönnichsen for fruitful discussions.
Received: February 8, 2016
Published Online: March 4, 2016
Eur. J. Org. Chem. 2016, 1669–1672
1672
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim