DU ET AL.
9 of 10
2JP,H = 36 Hz, 1H, Fe-H), 0.90–2.08 (m, 53H, C [CH3]3),
PCH3, CH3, CH2) 7.24–7.95 (m, 5 H, Ar-H). 31P NMR
(121 MHz, C6D6, 298 K, ppm): 19.2–19.6 (m, 1P), 21.2–
21.8 (m, 2P). 13C NMR (75 MHz, C6D6, 298 K, ppm): 24.7
CONFLICT OF INTEREST
There are no conflicts to declare.
2
(m), 29.0 (m), 29.9, 32.0 (d, JP,c = 8 Hz), 33.2, 35.8, 53.4,
REFERENCES
54.5, 77.7 (Fe-CH2), 129.0 (Carom), 129.7 (Carom), 134.0
(Carom), 171.3 (NCN). 29Si NMR (59.59 MHz, C6D6,
298 K, ppm): 53.3 (m).
[1] a) S. Raoufmoghaddam, Y. P. Zhou, Y. Wang, M. Driess,
J. Organomet. Chem. 2017, 829, 2; b) Y. P. Zhou, M. Driess,
Angew. Chem., Int. Ed. 2019, 58, 3715; c) C. K. Shan, S. L. Yao,
M. Driess, Chem. Soc. Rev. 2020, 49, 6733.
[2] a) A. Fürstner, H. Krause, C. W. Lehmann, Chem. Commun.
2001, 2372; b) G. Tan, S. Enthaler, S. Inoue, B. Blom, M.
Driess, Angew. Chem., Int. Ed. 2015, 54, 2214; c) H. Ren,
Y. P. Zhou, Y. Bai, C. Cui, M. Driess, Chem. – Eur. J. 2017,
23, 5663.
4.3 | Representative experimental
procedure for the hydrosilylation reactions
Under a nitrogen atmosphere, 1-mmol aldehyde or
ketone substrate was weighed into a 20 mL Schlenk tube
[3] S. Khoo, J. Cao, M. C. Yang, Y. L. Shan, M. D. Su, C. W. So,
Chem. – Eur. J. 2018, 24, 14329.
[4] a) R. Chinchilla, C. Najera, Chem. Rev. 2007, 107, 874; b) R.
Chinchilla, C. Najera, Chem. Soc. Rev. 2011, 40, 5084.
[5] M. Stoelzel, C. Prasang, B. Blom, M. Driess, Aust. J. Chem.
2013, 66, 1163.
[6] M. P. Luecke, D. Porwal, A. Kostenko, Y. P. Zhou, S. Yao, M.
Keck, C. Limberg, M. Oestreich, M. Driess, Dalton Trans.
2017, 46, 16412.
[7] Y. Wang, A. Kostenko, S. Yao, M. Driess, J. Am. Chem. Soc.
2017, 139, 13499.
[8] A. Bruck, D. Gallego, W. Wang, E. Irran, M. Driess, J. F.
Hartwig, Angew. Chem., Int. Ed. 2012, 51, 11478.
[9] B. Blom, S. Enthaler, S. Inoue, E. Irran, M. Driess, J. Am.
Chem. Soc. 2013, 135, 6703.
[10] Z. Zuo, L. Zhang, X. Leng, Z. Huang, Chem. Commun. 2015,
51, 5073.
[11] Y. Bai, J. Zhang, C. Cui, Chem. Commun. 2018, 54, 8124.
[12] a) S. L. Zhou, D. Addis, S. Das, K. Junge, M. Beller, Chem.
Commun. 2009, 4883; b) R. Langer, G. Leitus, Y. Ben-David,
D. Milstein, Angew. Chem., Int. Ed. 2011, 50, 2120; c) I. Buslov,
J. Becouse, S. Mazza, M. Montandon-Clerc, X. L. Hu, Angew.
Chem., Int. Ed. 2015, 54, 14523; d) P. Kang, C. Cheng, Z. Chen,
C. K. Schauer, T. J. Meyer, M. Brookhart, J. Am. Chem. Soc.
2012, 134, 5500.
containing
a
magnetic stirring. Later, 1.2-mmol
(EtO)3SiH and 2 mmol% iron hydride 1 were added to
the tube. The system was then heated at 60ꢁC for 8 hr.
The conversion was determined by GC with n-dodecane
as an internal standard. After cooling to room tempera-
ture, the mixture was quenched with MeOH (2 ml) and a
10% aqueous solution of NaOH (2 ml) under vigorous
stirring at 60ꢁC for about 24 hr. The product alcohol was
extracted with 60-ml diethyl ether three times and dried
over Na2SO4. After filtration, the volatile materials were
evaporated in vacuo. The crude product was purified by
column chromatography over silica gel with a mixture of
petroleum ether and ethyl acetate (10:1) as the eluent to
yield the product. The pure product was characterized by
NMR analysis.
4.4 | X-ray structure determinations
Intensity data were collected on a Stoe Stadi Vari dif-
fractometer equipped with graphite-monochromatized
Ga Kα radiation (λ = 1.34143 Å). Crystallographic data
for complex 1 are summarized in the Supporting Infor-
mation. The structure was solved by direct methods
with the OLEX 2 program[25] and refined with full-
matrix least squares on all F2 (SHELXL).[26] All non-
hydrogen atoms were refined anisotropically. CCDC
1865448 (1) contains supplementary crystallographic
data for this paper.
[13] R. Imayoshi, K. Nakajima, J. Takaya, N. Iwasawa, Y.
Nishibayashi, Eur. J. Inorg. Chem. 2017, 3769.
[14] a) S. Wu, X. Li, Z. Xiong, W. Wu, Y. Lu, H. Sun, Organometal-
lics 2013, 32, 3227; b) S. Ren, S. Xie, T. Zheng, Y. Wang, S. Xu,
B. Xue, X. Li, H. Sun, O. Fuhrd, D. Fenske, Dalton Trans.
2018, 47, 4352.
[15] X. Qi, T. Zheng, J. Zhou, Y. Dong, X. Zuo, X. Li, H. Sun, O.
Fuhr, D. Fenske, Organometallics 2019, 38, 268.
[16] S. Li, Y. Wang, W. Yang, K. Li, H. Sun, X. Li, O. Fuhr, D.
Fenske, Organometallics 2020, 39, 757.
[17] R. Azhakar, R. S. Ghadwal, H. W. Roesky, H. Wolf, D. Stalke,
Organometallics 2012, 31, 4588.
[18] P. Bhattacharya, J. A. Krause, H. Guan, Organometallics 2011,
30, 4720.
[19] H. Tobita, A. Matsuda, H. Hashimoto, K. Ueno, H. Ogino,
Angew. Chem., Int. Ed. 2004, 43, 221.
ACKNOWLEDGMENTS
We gratefully acknowledge the support by the Natural
Science Foundation of Shandong Province ZR2019ZD46/
ZR2019MB065 and NSF China (no. 21971151/21572119).
[20] D. Gallego, S. Inoue, B. Blom, M. Driess, Organometallics
2014, 33, 6885.
[21] L. Zhao, N. Nakatani, Y. Sunada, H. Nagashima, J. Hasegawa,
J. Org. Chem. 2019, 84, 8552.
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are avail-
able in the supporting information of this article.