Organic Letters
Letter
Table 1. Synthesis of 4-Substituted Proline Derivatives, cis 1
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures for the preparation of α,β-unsaturated
aldehydes, 4a−e, 1a−e, and 18. Chiral HPLC traces for 4a−e
1
and ent-4a. H and 13C NMR spectra for all new compounds.
This material is available free of charge via the Internet at http://
a
R
yield 4 (%)
ee 4 (%)
dr 1 (cis:trans)
a
b
c
d
e
e
Me
Et
42
35
57
31
66
97
95
93
82
80
93
19:1
14:1
10:1
10:1
20:1
20:1
AUTHOR INFORMATION
Corresponding Author
■
iPr
Bn
Notes
Chx
Chx
b
54
a
b
The authors declare no competing financial interest.
Yield over three steps from 8. PTC reaction conducted at −95 °C.
strategies,24 4-iPrPro has not been reported previously. However,
cis 4-BnPro has been investigated as a constrained analogue of the
α2δ ligands pregabalin and gabapentin for the treatment of
neuropathic pain.25 In each case, our PTC route allows
substantially more efficient access to these interesting substituted
proline derivatives.
To demonstrate the applicability of this method to the
synthesis of trans 4-substituted prolines (trans 1, Figure 2), such
as the 4-ChxPro species found in Fosinopril, Chx substituted
enamine 4e was treated with H2 in the presence of Crabtree’s
Ir(I) catalyst,5a generating 18 in 75% yield as a single
diastereomer (Scheme 3). Cbz deprotection (H2, Pd/C) gave
trans 1e also in high yield (72%),26,27 allowing direct comparison
with the previously synthesized diastereomer cis 1e.28
ACKNOWLEDGMENTS
We thank Cancer Research UK (Grant ref C21383/A6950) and
the EC (Contract: MEST-CT-2005-020744) for funding.
■
REFERENCES
■
(1) Bach, T. M. H.; Takagi, H. Appl. Microbiol. Biotechnol. 2013, 97,
6623−6634.
(2) (a) Koskinen, A. M. P.; Rapoport, H. J. Org. Chem. 1989, 54, 1859−
1866. (b) Mothes, C.; Caumes, C.; Guez, A.; Boullet, H.; Gendrineau,
́
T.; Darses, S.; Delsuc, N.; Moumne, R.; Oswald, B.; Lequin, O.;
Karoyan, P. Molecules 2013, 18, 2307−2327.
(3) (a) Nevalainen, M.; Kauppinen, P. M.; Koskinen, A. M. P. J. Org.
Chem. 2001, 66, 2061−2066. (b) Koivisto, J. J.; Kumpulainen, E. T. T.;
Koskinen, A. M. P. Org. Biomol. Chem. 2010, 8, 2103−2116.
(4) Teruya, T.; Sasaki, H.; Fukazawa, H.; Suenaga, K. Org. Lett. 2009,
11, 5062−5065.
(5) (a) Murphy, A. C.; Mitova, M. I.; Blunt, J. W.; Munro, M. H. G. J.
Nat. Prod. 2008, 71, 806−809. (b) Del Valle, J. R.; Goodman, M. J. Org.
Chem. 2003, 68, 3923−3931. (c) Li, W.; Yu, S.; Jin, M.; Xia, H.; Ma, D.
Tetrahedron Lett. 2011, 52, 2124−2127.
Scheme 3. Synthesis of Fosinopril Intermediate trans 1e
(6) (a) Ukushima, K.; Arai, T.; Mori, Y.; Tsuboi, M.; Suzuki, M. J.
Antibiot. 1983, 36, 1613−1630. (b) Fujii, K.; Sivonen, K.; Adachi, K.;
Noguchi, K.; Sano, H.; Hirayama, K.; Suzuki, M.; Harada, K. Tetrahedron
Lett. 1997, 38, 5525−5528. (c) Nakajima, M.; Torikata, A.; Tamaoki, H.;
Haneishi, T.; Arai, M.; Kinoshita, T.; Kuwano, H. J. Antibiot. 1983, 36,
967−975. (d) Okino, T.; Qi, S.; Matsuda, H.; Murakami, M.;
Yamaguchi, K. J. Nat. Prod. 1997, 60, 158−161. (e) Xie, W.; Zou, B.;
Pei, D.; Ma, D. Org. Lett. 2005, 7, 2775−2777.
(7) Deforrest, J. M.; Waldtron, T. L.; Harvey, C.; Scalese, B.; Rubin, B.;
Powell, J. R.; Petrillo, E. W.; Cushman, D. W. J. Cardiovasc. Pharmacol.
1989, 14, 730−736.
(8) (a) Yeboah, E. M.O.; Yeboah, S. O.; Singh, G. S. Tetrahedron 2011,
67, 1725−1762. (b) Jew, S.; Park, H. Chem. Commun. 2009, 7090−7103.
(c) Marouka, K. Org. Process Res. Dev. 2008, 12, 679−697.
(9) (a) Boddaert, T.; Coquerel, Y.; Rodriguez, J. Chem.Eur. J. 2011,
17, 2266−2271. (b) Kang, J. Y.; Carter, R. G. Org. Lett. 2012, 14, 3178−
3181. (c) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007,
129, 5364−5365.
(10) (a) Lygo, B.; Beynon, C.; McLeod, M. C.; Roy, C.-E.; Wade, C. E.
Tetrahedron 2010, 66, 8832−8836. (b) Lygo, B.; Crosby, J.; Lowdon, T.
R.; Peterson, J. A.; Wainwright, P. G. Tetrahedron 2001, 57, 2403−2409.
(c) Lygo, B.; Beynon, C.; Lumley, C.; McLeod, M.; Wade, C. E.
Tetrahedron Lett. 2009, 50, 3363−3365.
(11) Lee, J.-H.; Yoo, M.-S.; Jung, J.-H.; Jew, S.-S.; Park, H.-G.; Jeong,
B.-S. Tetrahedron 2007, 63, 7906−7915.
(12) O’Donnell, M. J. Aldrichimica Acta 2001, 34, 3−15.
(13) Mild aqueous acid (citric acid, 0.5 M aq) was used, as stronger
acids may promote racemization of the α stereocenter.10a
(14) The use of other carbamate protecting groups (Boc, Fmoc, etc.)
has not been reported in the literature for this type of reaction and was
not investigated at this time.
The proline scaffold is a privileged motif that is found in
Nature and has been exploited in many catalytic processes. By
judicious choice of either the Michael- or RCM-based routes
presented herein, a range of 4-substitutions (4-XPro) may be
accessed from readily available, or easily prepared, achiral starting
materials. This should allow the application of this interesting
modification of the proline scaffold to be explored in more depth
in future studies. The two routes intercept a common enamine
intermediate 4 which can be obtained in high % ee using
cinchona alkaloid-based PTCs, and from this either the cis or
trans diastereomer of 1 is readily accessed through the
appropriate choice of hydrogenation conditions. Other trans-
formations which exploit the reactivity of the enamine
intermediate (beyond hydrogenation) are yet to be explored.
4780
dx.doi.org/10.1021/ol502239g | Org. Lett. 2014, 16, 4778−4781