Angewandte
Communications
Chemie
How to cite: Angew. Chem. Int. Ed. 2018, 57, 942–946
Angew. Chem. 2018, 130, 954–958
using TMSOTf in Et2O, nor under Wenderꢀs conditions using
PPTS in MeOH at room temperature or 508C (Scheme 5).
The main transformations appeared to be acetalization at C9
and C11 with the aldehyde, as observed by Keck. We also
observed other side-reactions, such as elimination of one silyl
group from the geminal bis(silyl) allyl moiety and intra-
molecular cyclization between C9 and C14.
[1] For selected reviews on bryostatins, see: a) K. J. Hale, M. G.
19, 413 –453; b) “Beyond Natural Products: Synthetic Ana-
logues of Bryostatin 1”: P. A. Wender, J. L. Baryza, M. K.
Hilinski, J. C. Horan, C. Kan, V. A. Verma in Drug Discovery
Research: New Frontiers in the Post-Genomic Era (Ed.: Z.
Huang), Wiley, Hoboken, 2007, pp. 127 –162; c) K. J. Hale, S.
Y. Lu, M. J. Krische in Total Synthesis of Naural Products (Eds.:
J. Li, E. J. Corey), Springer, Berlin, Heidelberg, 2012, pp. 103 –
130; e) “Rethinking the Role of Natural Products: Function-
Oriented Synthesis Bryostatin, and Bryologs”: P. A. Wender,
Products in Medicinal Chemistry (Ed.: S. Hanessian), Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014,
pp. 475 –543; f) P. Kollµr, J. Rajchard, Z. Balounovµ, J.
latest member of bryostatin 21, see: g) H.-B. Yu, F. Yang, F. Sun,
G.-Y. Ma, J.-H. Gan, W.-Z. Hu, B.-N. Han, W.-H. Jiao, H.-W. Lin,
[2] G. R. Pettit, C. L. Herald, D. L. Doubek, D. L. Herald, E.
[5] M.-K. Sun, J. Hongpaisan, T. J. Nelson, D. L. Alkon, Proc. Natl.
268, 75 –86; c) T. J. Nelson, M.-K. Sun, C. Lim, A. Sen, T. Khan,
F. V. Chirila, D. L. Alkon, J. Alzheimerꢀs Dis. 2017, 58, 521 –535.
27, 29 –35; b) G. M. Laird, C. K. Bullen, D. I. S. Rosenbloom,
A. R. Martin, A. L. Hill, C. M. Durand, J. D. Siliciano, R. F.
The data from the 1H NMR and 13C NMR spectroscopy in
CDCl3, high-resolution mass spectra, and optical rotation for
our synthetic bryostatin 8 were in agreement with those
reported for the natural product. Those data were kindly
provided by Prof. G. R. Pettit, who isolated bryostatin 8 first
in 1985.[18a,b] The identity of the synthetic sample was further
established by the excellent consistency between our
1H NMR, 13C NMR, and DEPT spectra in CD3OD and
those kindly provided by Prof. H. W. Lin, who isolated
bryostatin 8 later in 2001 (see the Supporting Informa-
tion).[18c]
In summary, we have used an organosilane-based strategy
to accomplish a convergent total synthesis of bryostatin 8 in
29 steps (longest linear sequence) and 51 total steps (33
purification steps). The synthesis highlights the power of the
geminal bis(silane) chemistry, which was employed as a uni-
fied strategy for constructing the C ring by [1,5]-Brook
rearrangement, and the B ring by Prins cyclization, thus
leading to union of the northern and southern parts. This
approach affords some structurally new and versatile inter-
mediates, such as dihydropyran 29, which may be a useful
scaffold for synthesizing C-ring analogues by functionaliza-
tion of the enol and vinyliodide moieties. A similar strategy
could also be used to modify the B ring by functionalization of
the vinylsilane in 35. Our success with geminal bis(silyl) Prins
cyclization and its reliable stereospecificity lead us to suggest
that it may be possible to generate the E-(C13) analogues of
the bryostatins, which differ in their preference for protein
kinaseC isoforms.[12k] This task would require exchanging the
geminal bis(silyl) homoallylic alcohol and aldehyde in the
northern and southern parts. We are investigating this
possibility in our group.
[9] M. J. Krische, J. M. Ketcham, I. Volchkov, T.-Y. Chen, P. M.
Blumberg, N. Kedei, N. E. Lewin, J. Am. Chem. Soc. 2016, 138,
13415 –13423 and references therein.
[10] a) M. G. Kazanietz, N. E. Lewin, F. Gao, G. R. Petit, P. M.
Blumberg, Mol. Pharmacol. 1994, 46, 374 –379; b) E. M. Griner,
[11] D. E. Schaufelberger, M. P. Koleck, J. A. Beutler, A. M. Vatakis,
A. B. Alvarado, P. Andrews, L. V. Marzo, G. M. Muschik, J.
[12] For total synthesis of the bryostatins, see: bryostatin 7: a) M.
Kageyama, T. Tamura, M. H. Nantz, J. C. Roberts, P. Somfai,
7407 –7408; bryostatin 2: b) D. A. Evans, P. H. Carter, E. M.
Carreira, J. A. Prunet, A. B. Charette, M. Lautens, Angew.
2526 –2530; c) D. A. Evans, P. H. Carter, E. M. Carreira, J. A.
7540 –7552; bryostatin 3: d) K. Ohmori, Y. Ogawa, T. Obitsu, Y.
formal synthesis of bryostatin 7: e) A. E. Aliev, K. J. Hale, Org.
Lett. 2006, 8, 4477 –4480; bryostatin 16: f) B. M. Trost, G. Dong,
Y. B. Poudel, T. J. Cummins, A. Rudra, J. A. Covel, J. Am. Chem.
13876 –13879; bryostatin 1: k) P. A. Wender, C. T. Hardman, S.
Acknowledgements
We are grateful for financial support from the the NSFC
(21622202, 21290180) and the MOST (2017ZX09101003-005-
004). We thank Prof. G. R. Pettit for providing the NMR data
of the natural bryostatin 8. We also thank Prof. Hou-Wen Lin
for providing the NMR data (fid. format) for the natural
bryostatin 8.
Conflict of interest
The authors declare no conflict of interest.
Keywords: cyclization ·natural products ·pyrans ·
rearrangements ·total synthesis
Angew. Chem. Int. Ed. 2018, 57, 942 –946
ꢀ 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
945