Angewandte Chemie International Edition
10.1002/anie.201711833
COMMUNICATION
reversible [1+2] cycloadditions involving silylenes and ethylene
have indeed been reported, e.g. the reaction of ethylene with a
styrene react through the usual [2+2] cycloaddition pattern to
give the housane product 5. Thermolysis of 4 under vacuum
strongly supports the dissociative nature of the transformation to
5.
[
17]
[14b,18]
phosphonium silaylide and with acyclic silylenes.
Melting
of 4 was therefore repeated under dynamic vacuum in order to
remove any liberated styrene rapidly. The melt residue of 4 after
having been kept in vacuum at 170°C for two minutes showed
2
9
the characteristic Si NMR signals of cyclotrisilene 1 at 42.82,
Acknowledgements
1
−22.98 ppm. From the
H NMR spectrum the yield of
regenerated 1 was estimated to about 78 (Figure S15-16),
accompanied by small quantities of addition product 5 and
other by-products.
Support by Saarland University, the China Scholarship Council
(
Fellowship H.Z.), and COST Action CM1302 (Smart Inorganic
Polymers) is gratefully acknowledged.
On this basis, we propose the following mechanistic scenario
for the formation of 5: the kinetic product of [1+2] addition 4 re-
dissociates to give free styrene and the transient disilenyl
silylene 6, which should rapidly isomerize to cyclotrisilene 1
even at elevated temperature. Under thermodynamic control,
Keywords: Group 14 elements • silicon • low-valent species •
ring-opening • cycloaddition
[1]
[2]
a) M. Kosa, M. Karni, Y. Apeloig, J. Chem. Theory Comput. 2006, 2,
956-964; b) B. Pintér, A. Olasz, K. Petrov, T. Veszprémi,
Organometallics 2007, 26, 3677-3683.
[
2+2] cycloaddition of 1 with styrene affords housane 5 (Scheme
4
). DFT calculations at the dispersion-corrected M062X/def2-
−1
a) T. Iwamoto, C. Kabuto, M. Kira, J. Am. Chem. Soc. 1999, 121, 886-
SVP level of theory indeed reveal 4 to be about 16.8 kcal mol
8
87; b) T. Iwamoto, M. Tamura, C. Kabuto, M. Kira, Science 2000, 290,
04-506; c) M. Ichinohe, T. Matsuno, A. Sekiguchi, Angew. Chem. Int.
higher in G298 than 5 (Scheme 4). While this difference is only
slightly lowered at 443 K, dissociation of 4 to free disilenyl
5
Ed. 1999, 38, 2194-2196, d) K. Uchiyama, S. Nagendran, S. Ishida, T.
Iwamoto, M. Kira, J. Am. Chem. Soc. 2007, 129, 10638-10639; e) V. Y.
Lee, H. Yasuda, A. Sekiguchi, J. Am. Chem. Soc. 2007, 129, 2436-
2437; f) K. Leszczyńska, K. Abersfelder, A. Mix, B. Neumann, H. G.
Stammler, M. J. Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem. Int.
Ed. 2012, 51, 6785-6788; g) A. Tsurusaki, J. Kamiyama, S. Kyushin, J.
Am. Chem. Soc. 2014, 136, 12896-12898.
silylene
6 is thermodynamically significantly more feasible
−
1
−1
(
G298 = +28.2 kcal mol vs. G443 = +21.4 kcal mol ).
According to Hammond's postulate, the kinetics of an equilibrium
between 1 and 4 under these conditions (G443 = +5.7 kcal
−
1
mol ) can be approximated by the energy of the transient
intermediate 6.
[
3]
4]
a) V. Y. Lee, M. Ichinohe, A. Sekiguchi, Chem. Lett. 2001, 30, 728-729;
b) M. J. Cowley, Y. Ohmori, V. Huch, M. Ichinohe, A. Sekiguchi, D.
Scheschkewitz, Angew. Chem. Int. Ed. 2013, 52, 13247-13250.
a) V. Y. Lee, S. Miyazaki, H. Yasuda, A. Sekiguchi, J. Am. Chem. Soc.
[
2
008, 130, 2758-2759; b) Y. Ohmori, M. Ichinohe, A. Sekiguchi, M. J.
Cowley, V. Huch, D. Scheschkewitz, Organometallics 2013, 32, 1591-
594.
a) V. Y. Lee, H. Yasuda, A. Sekiguchi, J. Am. Chem. Soc. 2007, 129,
436-2437; b) V. Y. Lee, O. A. Gapurenko, S. Miyazaki, A. Sekiguchi, R.
M. Minyaev, V. I. Minkin, H. Gornitzka, Angew. Chem. Int. Ed. 2015, 54,
4118-14122.
R. Singh, C. Czekelius, R. R. Schrock, Macromolecules 2006, 39,
316-1317.
M. J. Cowley, V. Huch, H. S. Rzepa, D. Scheschkewitz, Nat. Chem.
013, 5, 876-879.
1
[5]
2
1
[6]
[7]
[8]
1
2
Recent reviews (Si=Si): a) C. Präsang, D. Scheschkewitz, Chem. Soc.
Rev. 2016, 45, 900-921; b) T. Iwamoto, S. Ishida, Struct. Bond. 2014,
1
56, 125-202; c) D. Scheschkewitz, Chem. Lett. 2011, 40, 2-11; d) V. Y.
Lee, A. Sekiguchi, J. Escudié, H. Ranaivonjatovo, Chem. Lett. 2010, 39,
12-318; e) D. Scheschkewitz, Chem. Eur. J. 2009, 15, 2476-2485; f) M.
3
Kira, T. Iwamoto, Adv. Organomet. Chem. 2006, 54, 73-148.
V. Y. Lee, M. Ichinohe, A. Sekiguchi, Chem. Commun. 2001, 2146-
2147.
[9]
Scheme 4. Mechanism proposed for the formation of housane 5 from the
i
kinetic product disilenyl-substituted silirane 4 (R Tip 2,4,6-Pr
3
C
6
H
2
;1Gibb's
−
enthalpies at the M062X/def2-SVP level of theory are given in kcal mol ).
[10] CCDC 1586039 (2a), 1586040 (2b), 1586041 (3), 1586042 (4),
586043 (5) contain the supplementary crystallographic data for this
1
paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
11] Examples see: a) I. Masayuki, A. Wataru, J.C.S. Chem. Comm. 1979,
In conclusion, with species with one isolated carbonyl group
cyclotrisilene 1 undergoes formal [2+2] cycloaddition to give
housanes 2a,b. In contrast, the reaction with less polar double
bonds of benzil and styrene at room temperature likely proceeds
via ring-opening to transient disilenyl silylene 6 to give [1+4] and
[
6
55-656; b) J. Heinicke, B. Gehrhus, J. Organomet. Chem. 1992, 423,
3-21; c) H. G. Stammler, B. Neumann, A. Moehrke, E. A. Bunte, D.
1
Eikenberg, P. Jutzi, Organometallics 1996, 15, 1930-1934; d) B.
Gehrhus, P. B. Hitchcock, M. F. Lappert, Organometallics 1997, 16,
4861-4864; e) S. Meinel, J. Heinicke, J. Organomet. Chem. 1998, 561,
[
1+2] addition products 3 and 4, respectively, which represent
1
21-129; f) R. Azhakar, R. S. Ghadwal, H. W. Roesky, J. Hey, D. Stalke,
the first examples of disilenyl silylene reactivity of any
cyclotrisilene. Under thermodynamic control, however, 1 and
Organometallics 2011, 30, 3853-3858; g) S. Ishida, K. Uchida, T.
Iwamoto, Heteroatom Chem. 2014, 25, 348-353.
4
This article is protected by copyright. All rights reserved.