ChemComm
Communication
The computations were performed at the Research Center for
Computational Science, Okazaki, Japan.
Notes and references
1
(a) D. M. Kurtz Jr., D. F. Shriver and I. M. Klotz, Coord. Chem. Rev.,
1977, 24, 145; (b) P. C. Wilkins and R. G. Wilkins, Coord. Chem. Rev.,
987, 79, 195; (c) R. E. Stenkamp, Chem. Rev., 1994, 94, 715.
1
2
(a) D. M. Kurtz Jr., JBIC, J. Biol. Inorg. Chem., 1997, 2, 159; (b) D. M.
Kurtz Jr., Dioxygen-binding Proteins, in Comprehensive Coordination
Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford,
U.K., 2004, vol. 8, p. 229.
3
4
(a) B. J. Wallar and J. D. Lipscomb, Chem. Rev., 1996, 96, 2625;
(
b) C. E. Tinberg and S. J. Lippard, Acc. Chem. Res., 2011, 44, 280.
(a) C. Krebs, J. M. Bollinger and S. J. Booker, Curr. Opin. Chem. Biol.,
2011, 15, 291; (b) A. B. Tomter, G. Zoppellaro, N. H. Andersen,
H. Hersleth, M. Hammerstad, Å. K. Røhr, G. K. Sandvik, K. R. Strand,
G. E. Nilsson, C. E. Bell III, A. Barra, E. Blasco, L. L. Pape,
E. I. Solomon and K. K. Andersson, Coord. Chem. Rev., 2013, 257, 3.
B. G. Fox, K. S. Lyle and C. E. Rogge, Acc. Chem. Res., 2004, 37, 421.
(a) P. Nordlund and H. Eklund, Curr. Opin. Struct. Biol., 1995, 5, 758;
Fig. 4 (a) Consumption of H
2
O
2
in the presence of met-I119H (solid line)
] = 5 mM. All experi-
2 2
and met-WT (dashed line); [protein] = 100 mM, [H O
ments were carried out in 50 mM HEPES (pH 7.0) at 25 1C. (b) Oxidation
reaction of guaiacol by met-I119H (solid line) and met-WT (dashed line) at
5
6
2
5 1C. The absorption of the guaiacol product at 470 nm was monitored;
[protein] = 100 mM, [guaiacol] = 5 mM, [H ] = 5 mM.
2 2
O
(
b) M. H. Sazinsky and S. J. Lippard, Acc. Chem. Res., 2006, 39, 558.
7
(a) J. Xiong, R. S. Phillips, D. M. Kurtz Jr., S. Jin, J. Ai and J. Sanders-
Loehr, Biochemistry, 2000, 39, 8526; (b) C. S. C. Farmer, D. M. Kurtz
Jr., R. S. Phillips, J. Ai and J. Sanders-Loehr, J. Biol. Chem., 2000,
described in Fig. 4b. During the substrate oxidation reaction,
is also expected to be consumed by its concurrent dispro-
portionation. We confirmed that the oxidation of guaiacol could
be continued upon the addition of H to the initial reaction
2
75, 17043; (c) C. S. Farmer, D. M. Kurtz Jr., Z. J. Liu, B. C. Wang,
J. Rose, J. Ai and J. Sanders-Loehr, JBIC, J. Biol. Inorg. Chem., 2001,
, 418; (d) M. Faiella, C. Andreozzi, R. T. M. de Rosales, V. Pavone,
2 2
H O
6
2 2
O
O. Maglio, F. Nastri, W. F. DeGrado and A. Lombardi, Nat. Chem.
Biol., 2009, 5, 882; (e) A. J. Reig, M. M. Pires, R. A. Snyder, Y. Wu,
H. Jo, D. W. Kulp, S. E. Butch, J. R. Calhoun, T. G. Szyperski, E. I.
Solomon and W. F. Degrado, Nat. Chem., 2012, 4, 900.
solution (Fig. S7, ESI†). The key for the generation of the oxidizing
intermediate could be a hydrogen bonding interaction between a
hydroperoxide coordinating in a fashion similar to that in oxyHr
and the displaced H119 ligand. Previous studies have invoked
hydrogen bonding to a hydroperoxide bound to Fe(III) as
8 J. Xiong, D. M. Kurtz Jr., J. Ai and J. Sanders-Loehr, Biochemistry,
000, 39, 5117.
2
9
C. E. Isaza, R. Silaghi-Dumitrescu, R. B. Iyer, D. M. Kurtz Jr. and
M. K. Chan, Biochemistry, 2006, 45, 9023.
1
9
promoting formation of a high-valent iron-oxo species. Sup- 10 A. Onoda, Y. Okamoto, H. Sugimoto, Y. Shiro and T. Hayashi, Inorg.
Chem., 2011, 50, 4892.
1 Y. Okamoto, A. Onoda, H. Sugimoto, Y. Takano, S. Hirota, D. M. Kurtz
Jr., Y. Shiro and T. Hayashi, Inorg. Chem., 2013, 52, 13014.
port for such a hydrogen bonding interaction comes from the
azide ligation experiment monitored by FTIR spectroscopy.
1
An additional contribution could involve dynamic coordination 12 L. L. Stookey, Anal. Chem., 1970, 42, 779.
1
3 The diferrous form of the I119H variant is oxidized by O
diferric form (Fig. S3, ESI†). Although this fact suggests the binding
of O , the oxy form was not observed due to more rapid autoxidation
and slower O binding relative to those of WT DcrH-Hr.
4 The total energy of the first coordination sphere in the H118on/
H119off and H118off/H119on models differs only 0.67 kcal mol
In the H118on/H119off model, the hydrogen bonding interaction
between H119 and chloride was formed. The interaction energy
between H118 and H119 in the H118on/H119off model and that
2
to the
of H118 and H119, which transiently forms a five-coordinated
Fe1 site via a conformational transition during the reaction.
This transient coordination site may allow formation of a
m-1,2-peroxo-diferric species, which is the most commonly
proposed precursor to high-valent iron–oxo species in non-heme
diiron-carboxylate enzymes.
In conclusion, we have engineered the diiron site of DcrH-Hr
to promote the H -dependent oxidation of exogenous sub-
2
2
1
À1
.
20
between H118 and M120 in the H118off/H119on model is 5.88 and
2
O
2
À1
1.84 kcal mol , respectively.
strates. A His residue introduced proximal to the diiron site will 15 W. L. DeLano, The PyMOL Molecular Graphics System, DeLano
Scientific, San Carlos, CA, 2008.
participate in a hydrogen bonding interaction with the exogenous
H O ligand, thereby, activating the peroxide. To the best of our
À1
1
6 The peak at 2043 cm was assigned as nas(NNN) of a free azide. The
15
2
2
azide ( NN ) adduct of met-WT gave two n (NNN) peaks at 2033
2
as
À1
knowledge, this is the first example that successfully converts an
-binding non-heme diiron-carboxylate protein to an oxidatively
and 2045 cm .
1
1
1
2
7 S. Lu, M. H. Sazinsky, J. W. Whittaker, S. J. Lippard and P. Mo ¨e nne-
Loccoz, J. Am. Chem. Soc., 2005, 127, 4148.
8 B. Mauerer, J. Crane, J. Schuler, K. Wieghardt and B. Nuber, Angew.
Chem., Int. Ed., 1993, 32, 289.
O
2
active one. Efforts to characterize the oxidatively active species of
the I119H variant and the further engineering of the diiron site
are in progress.
This work was financially supported by Grants-in-Aid for
Scientific Research ((C), JSPS KAKENHI Grant Number 205590020,
and Innovative Areas ‘‘Molecular Activation’’, area 2204, MEXT
KAKENHI Grant Number 221050130). Y.O. appreciates support
from the Research Fellowship of JSPS and Global COE Program
9 (a) J. T. Groves, Cytochrome P450, Springer US, Boston, MA, 2005, p. 1;
(b) A. R. McDonald and L. Que, Jr., Coord. Chem. Rev., 2013, 257, 414.
0 (a) A. Ghosh, F. Tiago de Oliveira, T. Yano, T. Nishioka, E. S. Beach,
I. Kinoshita, E. M u¨ nck, A. D. Ryabov, C. P. Horwitz and T. J. Collins,
J. Am. Chem. Soc., 2005, 127, 2505; (b) M. Kodera, M. Itoh, K. Kano,
T. Funabiki and M. Reglier, Angew. Chem., Int. Ed., 2005, 44, 7104;
(
c) G. Xue, A. T. Fiedler, M. Martinho, E. M u¨ nck and L. Que, Jr., Proc.
Natl. Acad. Sci. U. S. A., 2008, 105, 20615; (d) G. Xue, D. Wang,
R. De Hont, A. T. Fiedler, X. Shan, E. M u¨ nck and L. Que, Jr., Proc.
Natl. Acad. Sci. U. S. A., 2007, 104, 20713; (e) M. Kodera, Y. Kawahara,
Y. Hitomi, T. Nomura, T. Ogura and Y. Kobayashi, J. Am. Chem.
Soc., 2012, 134, 13236.
‘‘Global Education and Research Center for Bio-environmental
Chemistry’’ of Osaka University. D. M. K., Jr. acknowledges support
from the National Institutes of Health (grant R01 GM040388).
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 3421--3423 | 3423