10.1002/adsc.201700239
Advanced Synthesis & Catalysis
provides further experimental evidence that bulky
TIPS groups on meta-positions of the pyridine
moieties enhance secondary C–H bond oxidations
and site-selective oxidations of acetylandrosterone
derivatives.[10] We believe that the incorporation of a
bis-isoindoline backbone provides an additional
means of modification of the popular BPBP ligand in
oxidation catalysis. Further modification on the
aromatic rings of the chiral BPBI backbone may offer
a versatile and alternative strategy for ligand design
in N2Py2-based iron complexes. We are currently
exploring such ligand modifications in catalytic C–H
bond oxidations and enantioselective epoxidation
reactions.
Coord. Chem. Rev. 2012, 256, 1418–1434.
[4] C. Kim, K. Chen, J. Kim, L. Que, Jr., J. Am. Chem. Soc.
1997, 119, 5964–5965.
[5] a) T. A. van den Berg, J. W. de Boer, W. R. Browne,
G. Roelfes, B. L. Feringa, Chem. Commun. 2004,
2550–2551; b) A. Company, L. Gómez, M. Güell, M.;
X. Ribas, J. M. Luis, L. Que, Jr., M. Costas, J. Am
Chem. Soc. 2007, 129, 15766–15767; c) J. England, G.
J. P. Britovsek, N. Rabadia, A. J. P. White, Inorg.
Chem. 2007, 46, 3752–3767; d) J. England, C. R.
Davies, M. Banaru, A. J. P. White, G. J. P. Britovseka,
Adv. Synth. Catal. 2008, 350, 883–897; e) P. Liu, Y.
Liu, E. L.-M. Wong, S. Xiang, C.-M. Che, Chem. Sci.
2011, 2, 2187–2195; f) Y. Hitomi, K. Arakawa, T.
Funabiki, M. Kodera, Angew. Chem. 2012, 124, 3504–
3508; Angew. Chem. Int. Ed. 2012, 51, 3448–3452; g)
G. Olivo, O. Lanzalunga, S. Di Stefano, Adv. Synth.
Catal. 2016, 358, 843–863.
Experimental Section
General Catalytic Conditions
[6] G. Olivo, O. Cussó, M. Costas, Chem. Asian J. 2016,
11, 3148–3158.
A 20 mL vial was charged with: substrate (0.36 mmol, 1
equiv.), catalyst (3.6 μmol, 1 mol%), CH3CN (1.5 mL). A
0.5 M CH3CO2H solution in CH3CN was added (0.36 mL,
0.18 mmol, 50 mol%). The vial was cooled on an ice bath
with stirring. Subsequently, a 1.0 M H2O2 solution in
CH3CN (120 mol% ore 150 mol%) was delivered by
syringe pump over 6-30 min. After the oxidant addition,
the resulting mixture was stirred at 0 °C for another 10
min-2 h. At this point, a 1.0 M internal standard solution in
CH3CN (0.36 mL, 0.36 mmol) was added. The solution
was diluted with Et2O to precipitate the iron complex,
passed through a cotton wool filter to remove the catalyst.
Subsequently, a sample was submitted to GC or NMR
analysis. Reported analysis data represent the outcome of
at least two independent catalysis experiments.
[7] M. S. Chen, M. C. White, Science 2007, 318, 783–787.
[8] E. A. Mikhalyova, O. V. Makhlynets, T. D. Palluccio,
A. S. Filatov, E. V. Rybak-Akimova, Chem. Commun.
2012, 48, 687–689.
[9] a) L. Gómez, I. Garcia-Bosch, A. Company, J. Benet-
Buchholz, A. Polo, X. Sala, X. Ribas, M. Costas,
Angew. Chem. 2009, 121, 5830–5833; Angew. Chem.
Int. Ed. 2009, 48, 5720–5723; b) I. Prat, L. Gómez, M.
Canta, X. Ribas, M. Costas, Chem. Eur. J. 2013, 19,
1908–1913; c) G. Olivo, O. Lanzalunga, L. Mandolini,
S. Di Stefano, J. Org. Chem. 2013, 78, 11508–11512;
d) P. E. Gormisky, M. C. White, J. Am. Chem. Soc.
2013, 135, 14052–14055; e) L. Gómez, M. Canta, D.
Font, I. Prat, X. Ribas, M. Costas, J. Org. Chem. 2013,
78, 1421–1433.
Acknowledgements
J. C. acknowledges the China Scholarship Council (CSC) for a
doctoral scholarship. M. O. thanks the sustainability theme of
Utrecht University for funding. The X-ray diffractometer has
been financed by the Netherlands Organization for Scientific
Research (NWO).
[10] D. Font, M. Canta, M. Milan, O. Cussó, X. Ribas, R.
J. M. Klein Gebbink, M. Costas, Angew. Chem. 2016,
128, 5870–5873; Angew. Chem. Int. Ed. 2016, 55,
5776–5779.
References
[1] a) C. Limberg, Angew. Chem. 2003, 115, 6112–6136;
Angew. Chem. Int. Ed. 2003, 42, 5932–5954; b) M.
Christmann, Angew. Chem. 2008, 120, 2780–2783;
Angew. Chem. Int. Ed. 2008, 47, 2740–2742; c) L. Que,
Jr., W. B. Tolman, Nature 2008, 455, 333–340; d) C.-L.
Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293–
1314; e) M. Bordeaux, A. Galarneau, J. Drone, Angew.
Chem. 2012, 124, 10870–10881; Angew. Chem. Int. Ed.
2012, 51, 10712–10723.
[11] CCDC 1531774 (2) and 1531775 (3) contain the
supplementary crystallographic data for this paper.
These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via
[12] Q. Zhu, H. Huang, D. Shi, Z. Shen, C. Xia, Org. Lett.
2009, 11, 4536–4539.
[13] a) K. Chen, L. Que, Jr., J. Am. Chem. Soc. 2001, 123,
6327–6337; b) M. Costas, L. Que, Jr. Angew. Chem.
2002, 114, 2283–2285; Angew. Chem. Int. Ed. 2002, 41,
2179–2181; c) V. A. Yazerski, P. Spannring, D.
Gatineau, C. H. M. Woerde, S. M. Wieclawska, M.
Lutz, H. Kleijn, R. J. M. Klein Gebbink, Org. Biomol.
Chem. 2014, 12, 2062–2070.
[2] a) E. I. Solomon, T. C. Brunold, M. I. Davis, J. N.
Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan,
Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235–350;
b) E. Y. Tshuva, S. J. Lippard, Chem. Rev. 2004, 104,
987–1012; c) M. Costas, M. P. Mehn, M. P. Jensen, L.
Que, Jr., Chem. Rev. 2004, 104, 939–986.
[14] J. Serrano-Plana, W. N. Oloo, L. Acosta-Rueda, K. K.
Meier, B. Verdejo, E. García-España, M. G. Basallote,
E. Münck, L. Que, Jr., A. Company, M. Costas, J. Am.
Chem. Soc. 2015, 137, 15833–15842.
[3] a) M. Costas, K. Chen, L. Que, Jr., Coord. Chem. Rev.
2000, 200–202, 517–544; b) W. Nam, Acc. Chem. Res.
2007, 40, 522–531; c) E. P. Talsi, K. P. Bryliakov,
5
This article is protected by copyright. All rights reserved.