Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
Schneebeli, S. T.; Li, H.; Vermeulen, N. A.; Ke, C.; Stoddart, J. F.
Nat. Nanotechnol. 2015, 10, 547ꢀ553. (c) Kay, E. R.; Leigh, D. A.
Angew. Chem. Int. Ed. 2015, 54, 10080ꢀ10088.
assembly. Intriguingly, as shown in Figure 4, the characteristic
fluorescence emission of the assembly was significantly quenched
upon EPOꢀtoꢀant transition after heating the Ln⋅1EPO for 30 h.
Briefly, the supramolecular assembly could exhibit the expected
luminescent lanthanide switching behavior through reversible antꢀ
toꢀEPO transition. Scheme 1 shows the switch modes of the
assembly, which exhibits the expected luminescent lanthanide
switching behavior.
8. (a) Carr, P.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41, 7673ꢀ
7686. (b) Heine, J.; MüllerꢀBuschbaum, K. Chem.Soc.Rev. 2013, 42,
9232ꢀ9242. (c) Law, G. L.; Pham, T. A.; Xu, J.; Raymond, K. N. An-
gew. Chem. Int. Ed. 2012, 51, 2371ꢀ2374. (d) Isaac, M.; Denisov, S.
A.; Roux, A.; Imbert, D.; Jonusauskas, G.; McClenaghan, N. D.;
Sénèque, O. Angew. Chem. 2015, 127, 11615ꢀ11618.
9
In summary, a photoreaction tunable reversible lanthanide luꢀ
minecence supramolecular assembly was successfully constructed
through the host molecule 1 and dilanthanide metal. Significantly,
the existence of crown ether ring in this system could effectively
prevent the influence of alkali and alkaline earth metal ions on
luminescence of the Ln⋅1EPO, and the lanthanide luminescence of
assembly could be reversibly responsive through a regulable phoꢀ
toreaction upon light irradiation or heating. The photo/thermoꢀ
stimuliꢀdriven luminescent lanthanide molecular switch augurs
well for their future in multistimulusꢀdriven molecular machines
and logic gates applications.
9. (a) Chen, G.; Yang, C.; Prasad, P. N. Acc. Chem. Res. 2013, 46, 1474ꢀ
1486. (b) Tian, J.; Zeng, X.; Xie, X.; Han, S.; Liew, O. W.; Chen, Y.
T.; Wang, L.; Liu, X. J. Am. Chem. Soc. 2015, 137, 6550ꢀ6558.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
10. (a) Jalani, G.; Naccache, R.; Rosenzweig, D. H.; Haglund, L.; Vetroꢀ
ne, F.; Cerruti, M. J. Am. Chem. Soc. 2016, 138, 1078ꢀ1083. (b)
Parola, S.; JuliánꢀLópez, B.; Carlos, L. D.; Sanchez, C. Adv. Funct.
Mater. 2016, 26, 6506ꢀ6544.
11. Bagheri, A.; Arandiyan, H.; Boyer, C.; Lim, M. Adv. Sci. 2016, 3,
1500437.
12. Nakagawa, T.; Hasegawa, Y.; Kawai, T. Chem. Commun. 2009, 5630ꢀ
5632.
13. Han, M.; Zhang, H. ꢀY.; Yang, L. ꢀX.; Jiang, Q. Liu, Y. Org. Lett.
2008, 10, 5557ꢀ5560.
ASSOCIATED CONTENT
Supporting Information.
14. Ding, Z. ꢀJ.; Zhang, Y. ꢀM.; Teng, X.; Liu, Y. J. Org. Chem. 2011,
76, 1910ꢀ1913.
Compound characterization, and additional figures in the optical
experiments are provided. This material is available free of charge
15. (a) Kotova, O.; Daly, R.; dos Santos, C. M.; Boese, M.; Kruger, P. E.;
Boland, J. J.; Gunnlaugsson, T. Angew. Chem. Int. Ed. 2012, 51,
7208ꢀ7212. (b) Chen, P.; Li, Q.; Grindy, S.; HoltenꢀAndersen, N. J.
Am. Chem. Soc. 2015, 137, 11590ꢀ11593.
AUTHOR INFORMATION
16. (a) Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E.
B.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 9408ꢀ9414. (b)
Bünzli, J. C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048ꢀ1077.
Corresponding Author
17. (a) Yamamoto, T.; Yagyu, S.; Tezuka, Y. J. Am. Chem. Soc. 2016,
138, 3904ꢀ3911. (b) Murray, D. J.; Patterson, D. D.; Payamyar, P.;
Bhola, R.; Song, W.; Lackinger, M.; Schlüter, A. D.; King, B. T. J.
Am. Chem. Soc. 2015, 137, 3450ꢀ3453.
ACKNOWLEDGMENT
We thank NNSFC (21432004, 21372128 and 91527301), and the
973 Program (2015CB856500) for financial support
18. (a) Fudickar, W.; Linker, T. J. Am. Chem. Soc. 2012, 134, 15071ꢀ
15082. (b) Filatov, M. A.; Karuthedath, S.; Polestshuk, P. M.; Savoie,
H.; Flanagan, K. J.; Sy, C.; Sitte, E.; Telitchko, M.; Laquai, F.;
REFERENCES
Boyle, R. W.; Senge. M. O. J. Am. Chem. Soc. 2017, 139, 6282−
6285.
1. (a) Ge, Z.; S, Liu, Chem. Soc. Rev. 2013, 42, 7289ꢀ7325. (b) Zhang,
P.; Cheng, F.; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min Q.; Zhu, J. ꢀJ.
Angew. Chem. Int. Ed. 2014, 53, 2371ꢀ2375
19. Tremblay, M. S.; Halim, M.; Sames, D. J. Am. Chem. Soc. 2007, 129,
7570ꢀ7577.
2. (a) Castet, F.; Rodriguez, V.; Pozzo, J. L.; Ducasse, L.; Plaquet, A.;
Champagne, B. Acc. Chem. Res. 2013, 46, 2656ꢀ2665. (b) Velema,
W. A.; van der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen,
A. J. M.; Feringa, B. L. Nat. Chem. 2013, 5, 924.
20. The corresponding control experiments of 2/3 and their discussion
seeing SI.
3. Lee, D.; Yang, S. M.; Kim, T. H.; Jeon, B. C.; Kim, Y. S.; Yoon, J.
G.; Lee, H. N.; Baek, S. H.; Eom, C. B.; Noh, T. W. Adv. Mater.
2012, 24, 402ꢀ406.
4. (a) Bernardi, M.; Palummo, M.; Grossman, J. C. Nano Lett. 2013, 13,
3664ꢀ3670. (b) Zhang, Q. ꢀW.; Li, D.; Li, X.; White, P. B.; Meꢀ
cinović, J.; Ma, X.; Ågren. H.; Nolte, R. J. M.; Tian, H. J. Am. Chem.
Soc. 2016, 138, 13541−13550.
5. (a) Hinckelmann, M. V.; Virlogeux, A.; Niehage, C.; Poujol, C.;
Choquet, D.; Hoflack, B.; Zala, D.; Saudou, F. Nat. Commun. 2016,
7, 13233. (b) Wang, Y. X.; Liu, Y. Acta Chim. Sinica. 2015, 73, 984ꢀ
991.
6. (a) Uttamapinant, C.; Howe, J. D.; Lang, K.; Beránek, V.; Davis, L.;
Mahesh, M.; Barry, N. P.; Chin, J. W. J. Am. Chem. Soc. 2015, 137,
4602ꢀ4605. (b) Boettiger, A. N.; Bintu, B.; Moffitt, J. R.; Wang, S.;
Beliveau, B. J.; Fudenberg, G.; Imakaev, M.; Mirny, L. A.; Wu, C.
T.; Zhuang, X. Nature 2016, 529, 418ꢀ422. (c) Laine, R. F.; Albecka,
A.; van de Linde, S.; Rees, E. J.; Crump, C. M.; Kaminski, C. F. Nat.
Commun. 2015, 6, 5980.
7. (a) LeVine, M. V.; Cuenddet, M. A.; Khelashvili, G.; Weinstein, H.
Chem. Rev. 2016, 116, 6552ꢀ6587. (b) Cheng, C.; McGonigal, P. R.;
ACS Paragon Plus Environment