162
F.J. Maldonado-Hódar / Applied Catalysis A: General 408 (2011) 156–162
same sense. At 450 ◦C the benzene selectivity increased from 10
for Pt supported on Na-exchanged zeolite to 32% for Pt supported
on Cs-exchanged zeolite, tending to the 45% reached by PtKL cat-
alysts used as reference [10]. It is noteworthy that in this study,
a benzene selectivity of 45% was also reached for tungsten doped
carbon aerogel AW500 at 525 ◦C, increasing this value up to 60%
when the catalyst is prepared by impregnation. Similarly, the per-
formance of these metal doped carbon aerogels greatly improves
those presented by Trunschke [16]. In this work, authors used com-
posites with around 80% w/w of inorganic phase and obtained an
aromatic selectivity of 90% in n-octane conversion regardless of the
oxide used, but found that the aromatization centres were largely
deactivated. In this work are developed catalysts with good activ-
ity and selectivity of around 60%, that was stable for a long time
and used catalysts with a metal charge that was always less than
5% w/w. Moreover, it is demonstrated that the catalytic behaviour
is intrinsic of each catalyst and that can be fitted by the ade-
quate synthesis and pretreatments. Therefore, the preparation of
inorganic–organic composites based on carbon aerogels offers an
interesting alternative procedure for developing aromatization cat-
alysts. Many variables such as porosity, the active phase nature and
dispersion, loading, interaction between inorganic–organic phases,
multiple metal doping, etc. can be explored on the basis of the
flexibility of the preparation method.
References
[1] J.H. Sinfelt, US Patent 3,953,368, Exxon, 1976.
[2] J.P. Bournonville, J.P. Franck, G. Martino, Stud. Surf. Sci. Catal. 16 (1983)
81–90.
[3] L.I. Ali, A.A. Ali, S.M. Aboul-Fotouh, A.K. Aboul-Gheit, Appl. Catal. A 205 (2001)
129–146.
[4] I. Coleto, R. Roldán, C. Jiménez-Sanchidrián, J.P. Gómez, F.J. Romero-Salguero,
Fuel 86 (2007) 1000–1007.
[5] J.R. Bernard, in: L.V.C. Rees (Ed.), Proceedings of 9th International Zeol. Confer-
ence, Naples, Heyden, London, 1980, 686.
[6] P. Meriaudeau, C. Naccache, Catal. Rev. Sci. Eng. 39 (1997) 5–48.
[7] K.G. Azzam, G. Jacobs, W.D. Shafer, B.H. Davis, J. Catal. 270 (2010)
242–248.
[8] F.J. Maldonado-Hódar, J.M. Silva, F.R. Ribeiro, M.F. Ribeiro, Catal. Lett. 48 (1997)
69–73.
[9] F.J. Maldonado-Hódar, M.F. Ribeiro, J.M. Silva, A.P. Antunes, F.R. Ribeiro, J. Catal.
178 (1998) 1–13.
[10] T. Becue, F.J. Maldonado-Hódar, A.P. Antunes, J.M. Silva, M.F. Ribeiro, P. Mas-
siani, M. Kermarec, J. Catal. 181 (1999) 244–255.
[11] F.J. Maldonado-Hódar, T. Becue, J.M. Silva, M.F. Ribeiro, P. Massiani, M. Ker-
marec, J. Catal. 195 (2000) 342–351.
[12] D. Ciuparu, A. Ensuque, F. Bozon-Verduraz, Appl. Catal.,
A
326 (2007)
130–142.
[13] H. Al-Kandari, F. Al-Kharafi, A. Katrib, J. Mol. Catal.,
128–134.
[14] M.J. Ledoux, C. Pram Huu, J. Guille, H. Dunlop, J. Catal. 134 (2) (1992)
383–398.
[15] A. Szechenyi, F. Solymosi, Appl. Catal. A: Chem. 306 (2006) 149–158.
[16] A. Trunschke, D.L. Hoang, J. Radnik, K.W. Brzezinka, A. Brückner, H. Lieske, Appl.
Catal., A 208 (2001) 381–392.
[17] C. Moreno-Castilla, F.J. Maldonado-Hódar, J. Rivera-Utrilla, E. Rodríguez-
Castellón, Appl. Catal., A 183 (1999) 345–356.
A 287 (2008)
5. Conclusions
[18] F.J. Maldonado-Hódar, C. Moreno-Castilla, J. Rivera-Utrilla, Appl. Catal., A 203
(2000) 151–159.
[19] F. Duarte, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, L.M. Madeira, Appl. Catal.,
B 85 (2009) 139–147.
[20] R.A. Catalão, F.J. Maldonado-Hódar, A. Fernandes, C. Henriques, M.F. Ribeiro,
Appl. Catal., B 88 (1–2) (2009) 135–141.
[21] S. Morales-Torres, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, F. Carrasco-
Marín, J. Hazard. Mater. 183 (2010) 814–822.
[22] M.M. Dubinin, in: P.L. Walker Jr. (Ed.), Chemistry and Physics of Carbon, 2,
Marcel Dekker, New York, 1966, p. 51.
A series of metal-doped carbon aerogels and supported cata-
lysts on carbon aerogels were prepared. The porosity, chemical
nature and distribution are greatly influenced by the precursor salt
and the thermal treatments. The catalysts are active in n-hexane
conversion where only products of cracking and aromatization
processes were detected. The catalysts behave as monofunctional
catalysts and their activity and selectivity depend on the nature
of the active sites. The presence of metal with different oxidation
states can improve the catalytic performance through a synergetic
effect, because the activation/deactivation process seems to favour
alternately either cracking or the aromatization reaction. The car-
bon matrix largely protects the metal phase from sintering and can
facilitate the hydrogen spill-over, in such a way that similar activ-
ity was obtained after different treatments. However, the acidic
character obviously decreases after additional reducing treatments,
typically improving the aromatization ability. Nevertheless, in the
case of Ni and Co-doped aerogels, the reduction of metal to the
zero valence leads to catalysts that are totally selective to cracking,
as a consequence of the strong interaction of n-hexane with the
metal particles that avoid the desorption of products until the total
cleavage of the n-hexane molecule into six methane molecules is
produced. The preparation and optimization of metal-doped car-
bon aerogels opens a new and interesting route for developing
aromatization catalysts.
[23] R.C. Bansal, J.B. Donnet, H.F. Stoeckli, Active Carbons, Marcel Dekker, New York,
1988.
[24] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T.
Siemieniewska, Pure Appl. Chem. 57 (1985) 603–620.
[25] R.W. Pekala, C.T. Alviso, J.D. LeMay, J. Non-Cryst. Solids 125 (1990) 67–75.
[26] S. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15 (2003) 101–114.
[27] S. Morales-Torres, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, F. Carrasco-
Marín, Phys. Chem. Chem. Phys. 12 (2010) 10365–10372.
[28] H. Jirglova, F.J. Maldonado-Hódar, Langmuir 26 (20) (2010) 16103–16109.
[29] F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, Carbon 41
(2003) 1291–1299.
[30] F.J. Maldonado-Hódar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, Y.
Yamada, Langmuir 16 (2000) 4367–4373.
[31] A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, C. Moreno-Castilla, Langmuir 21
(2005) 10850–10855.
[32] M. Ai, J. Catal. 40 (1975) 318–326.
[33] M. Ai, J. Catal. 40 (1975) 327–333.
[34] C. Moreno-Castilla, F.J. Maldonado-Hódar, Phys. Chem. Chem. Phys. 2 (2000)
4818–4822.
[35] B.H. Davis, Catal. Today 53 (1999) 443–516.
[36] C. Yin, R. Zhao, C. Liu, Fuel 84 (2005) 701–706.
[37] D.L. Hoang, H. Berndt, H. Miessner, E. Schreier, J. Vijlter, H. Lieske, Appl. Catal.,
A 114 (1994) 295–311.
[38] E.R. Silva, J.M. Silva, P. Massiani, F.R. Ribeiro, M.F. Ribeiro, Catal. Today 107–108
(2005) 792–799.
[39] Z. Paál, Z. Zhan, I. Manninger, W.M.H. Sachtler, J. Catal. 155 (1995) 43–51.
Acknowledgment
This research is supported by the project CTM2010-18889 of the
Spanish MCIN.