Page 11 of 13
RSC Advances
DOI: 10.1039/C4RA14375B
intergrowth morphology and superior catalytic properties from
the ZnOꢀcontaining gel mixture. For comparison, Zn containing
3. H. Chen, Y. Yan, Y. Shao and H. Zhang, RSC Adv., 2014, 4, 55202ꢀ
55209.
ZSMꢀ11 samples were also prepared by direct synthesis method 60 4. O. A. Anunziata, J. Cussa and A. R. Beltramone, Catal. Today, 2011,
of using ZnSO4 or ZnOꢀimpregnatedꢀseed as zinc source and
impregnation method. The XRD patterns and IR spectra shows
that all the Zn containing samples possess pure ZSMꢀ11 phase
and high crystallinity. Besides, all the samples obtained from the
direct synthesis method exhibit the similar intergrowth
morphology to the extraneous seeds, which can be ascribed to the
scaffold effect of TBABr. Nevertheless, the samples Z11ꢀZn[O],
Z11ꢀZn[S] and Z11ꢀZn[PreO] exhibit obvious distinctive particle
shape from the ZSMꢀ11, indicating Zn species have been
incorporated into the zeolite framework in the crystallization
process and the incorporation amount follows the order of Z11ꢀ
171, 36ꢀ42.
5
0
5
0
5
0
5
5
6
7
.
.
.
A. Hagen and F. Roessner, Catal. Rev., 2000, 42, 403ꢀ437.
J. A. Biscardi and E. Iglesia, Catal. Today, 1996, 31, 207ꢀ231.
J. Armor, Catal. Today, 1995, 26, 147ꢀ158.
6
7
7
5
0
5
8. M. Shelef, Chem. Rev., 1995, 95, 209ꢀ225.
9
.
M. Y. Kustova, A. Kustov, S. E. Christiansen, K. T. Leth, S. B.
1
1
2
2
3
3
Rasmussen and C. H. Christensen, Catal. Commun., 2006, 7, 705ꢀ
7
08.
1
0. M. Y. Kustova, S. B. Rasmussen, A. Kustov and C. H. Christensen,
Appl. Catal. B: Environ., 2006, 67, 60ꢀ67.
29
11. P. Xie, Z. Ma, H. Zhou, C. Huang, Y. Yue, W. Shen, H. Xu, W. Hua
Zn[S] > Z11ꢀZn[O] > Z11ꢀZn[PreO]. The TEM images and Si
MAS NMR spectra further verify the fact that Zn species can be
well incorporated into the ZSMꢀ11 framework by ZnO and
and Z. Gao, Microporous Mesoporous Mater., 2014, 191, 112ꢀ117.
1
1
2. Y. Meng, H. C. Genuino, C.ꢀH. Kuo, H. Huang, S.ꢀY. Chen, L.
Zhang, A. Rossi and S. L. Suib, J. Am. Chem. Soc., 2013, 135, 8594ꢀ
8605.
ZnSO method, while only a small amount of Zn species can be
4
incorporated into zeolitc framework by ZnOꢀimpregnated seed
2
9
3. B. Li, B. Sun, X. Qian, W. Li, Z. Wu, Z. Sun, M. Qiao, M. Duke and
D. Zhao, J. Am. Chem. Soc., 2013, 135, 1181ꢀ1184.
method. Moreover, the Si MAS NMR spectra also demonstrates
that Zn species in the zeolite framework has an important impact
the coordination of Si species. The textural properties determined
14. O. A. Anunziata, G. A. Eimer and L. B. Pierella, Appl. Catal. A:
Gen., 2000, 190, 169ꢀ176.
by N adsorptionꢀdesorption experiment shows that the sample
2
Z11ꢀZn[O] prepared by ZnO method possesses both micropores 80 15. L. Yu, S. Huang, S. Zhang, Z. Liu, W. Xin, S. Xie and L. Xu, ACS
and mesopores, further resulting in its good methanol converse
activity. By tracking the crystallization process, it is found that
the ZnO could be gradually dissolved under the severely alkaline
environment and subsequently incorporated into the ZSMꢀ11
framework during the crystallization process. However, in the
ZnOꢀimpregnated seeded system, the ZnO cannot be well
incorporated in zeolite framework as a result of its interaction
with seeds. This work provides a very simple route to synthesize
ZnꢀZSMꢀ11 with good catalytic performance and this strategy
can also be extended to prepare other Zn containing zeolites for
reactions needing the Zn active sites and zeolite pore structures
simultaneously.
Catal., 2012, 2, 1203ꢀ1210.
16. Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li and G. Li, Microporous
Mesoporous Mater., 2011, 143, 435ꢀ442.
1
7. Z. Gabelica and S. Valange, Microporous Mesoporous Mater., 1999,
30, 57ꢀ66.
8
5
1
8. J. Gu, Y. Jin, Y. Zhou, M. Zhang, Y. Wu and J. Wang, J. Mater.
Chem.A, 2013, 1, 2453ꢀ2460.
1
2
9. S. Wang, C. Li, X. Meng, Q. Yu, T. You, CN 201210179763.8, 2012.
0. Q. Yu, C. Cui, Q. Zhang, J. Chen, Y. Li, J. Sun, C. Li, Q. Cui, C.
Yang and H. Shan, J. Energy Chem., 2013, 22, 761ꢀ768.
1. Q. Yu, J. Chen, Q. Zhang, C. Li and Q. Cui, Mater. Lett., 2014, 120,
9
0
2
2
9
7ꢀ100.
2. L. C. Lerici, M. S. Renzini, U. Sedran and L. B. Pierella, Energ Fuel,
013, 27, 2202ꢀ2208..
Acknowledgements
2
This work is supported by the National 973 Program of China 95 23. G. Coudurier, C. Naccache and J. C. Vedrine, J. Chem. Soc., Chem.
(No.2012CB215006). The authors also gratefully appreciate
Commun., 1982, 1413ꢀ1415.
4
0
financial support from the special project on air pollution control
of Beijing Municipal Science & Technology Commission
24. G. Wu, W. Wu, X. Wang, W. Zan, W. Wang and C. Li, Microporous
Mesoporous Mater., 2013, 180, 187ꢀ195.
(
No.Z141100001014006).
2
5. Q. Yu, Q. Zhang, J. Liu, C. Li and Q. Cui, CrystEngComm, 2013, 15,
7680ꢀ7687.
1
1
1
00
Notes and references
a
2
6. J. Wang, J. C. Groen, W. Yue, W. Zhou and M. O. Coppens, J.
Mater. Chem., 2007, 18, 468ꢀ474.
Department of Environmental Engineering, Civil and Environmental
4
5
5
0
Engineering School, University of Science and Technology Beijing,
Beijing 100083,China;
27. A. Gervasini, Appl. Catal. A: Gen., 1999, 180, 71ꢀ82.
2
2
3
8. R. Kore, R. Sridharkrishna and R. Srivastava, RSC Adv., 2013, 3,
1317ꢀ1322.
b
State Key Laboratory of Heavy Oil Processing, China University of
05
Petroleum (East China), Qingdao 266555, China
9. H. Jin, M. B. Ansari and S.ꢀE. Park, Chem. Commun., 2011, 47,
7482ꢀ7484.
Corresponding author Fax: +86 532 86981787; Tel: +86 532 86981862;
0. Y. Tao, H. Kanoh, L. Abrams and K. Kaneko, Chem. Rev., 2006,
1
06, 896ꢀ910.
10 31. M. S. Renzini, U. Sedran and L. B. Pierella, J. Anal. Appl. Pyrol.,
009, 86, 215ꢀ220.
2. Y. Li, S. Liu, S. Xie and L. Xu, Appl. Catal. A: Gen., 2009, 360, 8ꢀ
6.
1
2
.
.
L. Wang, S. Sang, S. Meng, Y. Zhang, Y. Qi and Z. Liu, Mater. Lett.,
2007, 61, 1675ꢀ1678.
2
5
5
3
J. Li, C. Hu, K. Tong, H. Xiang, Z. Zhu and Z. Hu, RSC Adv., 2014,
1
4
, 44377ꢀ44385.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 11