Paper
RSC Advances
characterized. It is found that the crystal morphology changes 16 Y. Cui, Q. Zhang, J. He, Y. Wang and F. Wei, Particuology,
obviously with the addition of DPHAB and the crystals aggregate 2013, 11, 468–474.
gradually with the enhanced DPHAB/H PO ratio in the reactant 17 Q. M. Sun, N. Wang, D. Y. Xi, M. Yang and J. H. Yu, Chem.
3
4
gel. The type of microporous template also plays an important
role in determining the product morphology. TEAOH having the 18 F. Wang, L. Sun, C. L. Chen, Z. Chen, Z. W. Zhang, G. H. Wei
strongest templating ability among the investigated templates and X. M. Jiang, RSC Adv., 2014, 4, 46093–46096.
shows the best cooperation with the surfactant for the forma- 19 D. Y. Xi, Q. M. Sun, J. Xu, M. Cho, H. S. Cho, S. Asahina, Y. Li,
Commun., 2014, 50, 6502–6505.
tion of nanosized and mesoporous SAPO-34. Although DPHAB
decomposes during the reaction, the long-alkyl chains of
F. Deng, O. Terasaki and J. H. Yu, J. Mater. Chem. A, 2014, 2,
17994–18004.
DPHAB can be involved in the SAPO-34 product leading to 20 Q. M. Sun, N. Wang, G. Q. Guo, X. X. Chen and J. H. Yu, J.
a mesoporous structure. Moreover, the use of DPHAB has little Mater. Chem. A, 2015, 3, 19783–19789.
effect on the acidity of the SAPO product, which contributes to 21 C. Wang, M. Yang, P. Tian, S. T. Xu, Y. Yang, D. H. Wang,
keep the original activity of the SAPO catalyst. The MTO catalytic
Y. Y. Yuan and Z. M. Liu, J. Mater. Chem. A, 2015, 3, 5608–
performance is therefore effectively improved. The work is
5616.
a useful exploration on the synthesis of SAPO molecular sieve by 22 L. Chen, R. W. Wang, S. Ding, B. B. Liu, H. Xia, Z. T. Zhang
using an organophosphorous surfactant, and the combined and S. L. Qiu, Chem. J. Chin. Univ., 2010, 9, 1693–1696.
roles of the organophosphorous surfactant and microporous 23 X. Y. Zhang, D. X. Liu, D. D. Xu, S. Asahina, K. A. Cychosz,
template are revealed.
K. V. Agrawal, Y. Al Wahedi, A. Bhan, S. Al Hashimi,
O. Terasaki, M. Thommes and M. Tsapatsis, Science, 2012,
3
36, 1684–1687.
4 Y. Fan, H. Xiao, G. Shi, H. Y. Liu and X. J. Bao, J. Catal., 2012,
85, 251–259.
5 D. W. Lewis, C. R. A. Catlow and J. M. Thomas, Chem. Mater.,
996, 8, 1112–1118.
Acknowledgements
2
2
2
2
2
We are thankful for the nancial support from the National
Natural Science Foundation of China (21476228 and 21101150).
1
6 M. Elanany, B. L. Su and D. P. Vercauteren, J. Mol. Catal. A:
Chem., 2007, 270, 295–301.
7 M. Sanchez, R. D. Diaz, T. Cordova, G. Gonzalez and
F. Ruette, Microporous Mesoporous Mater., 2015, 203, 91–99.
Notes and references
1
2
S. T. Wilson, Stud. Surf. Sci. Catal., 2007, 168, 105–135.
J. Liang, H. Y. Li, S. Zhao, W. G. Guo, R. H. Wang and 28 L. Gomez-Hortiguela, J. Perez-Pariente, F. Cora,
M. L. Ying, Appl. Catal., 1990, 64, 31–40.
A. J. Marchi and G. F. Froment, Appl. Catal., 1991, 71, 139–
C. R. A. Catlow and T. Blasco, J. Phys. Chem. B, 2005, 109,
21539–21548.
3
4
1
52.
S. Wilson and P. Barger, Microporous Mesoporous Mater.,
999, 29, 117–126.
http://www.syn.ac.cn/english/index.php.
29 M. Zokaie, D. S. Wragg, A. Gronvold, T. Fuglerud, J. H. Cavka,
K. P. Lillerud and O. Swang, Microporous Mesoporous Mater.,
2013, 165, 1–5.
1
5
6
30 H. Sun, J. Phys. Chem. B, 1998, 102, 7338–7364.
P. Tian, Y. X. Wei, M. Ye and Z. M. Liu, ACS Catal., 2015, 5, 31 B. Y. Liu, C. Li, Y. Q. Ren, Y. Z. Tan, H. X. Xi and Y. Qian,
922–1938.
Chem. Eng. J., 2012, 210, 96–102.
L. Xu, A. P. Du, Y. X. Wei, S. H. Meng, Y. L. He, Y. L. Wang, 32 B. Y. Liu, Y. Z. Tan, Y. Q. Ren, C. Li, H. X. Xi and Y. Qian, J.
1
7
Z. X. Yu, X. Z. Zhang and Z. M. Liu, Chin. J. Catal., 2008,
9, 727–732.
J. Zhu, Y. Cui, Y. Wang and F. Wei, Chem. Commun., 2009,
282–3284.
D. Fan, P. Tian, X. Su, Y. Y. Yuan, D. H. Wang, C. Wang,
Mater. Chem., 2012, 22, 18631–18638.
33 B. Y. Liu, F. Chen, L. M. Zheng, J. H. Ge, H. X. Xi and Y. Qian,
RSC Adv., 2013, 3, 15075–15084.
34 A. Inayat, I. Knoke, E. Spiecker and W. Schwieger, Angew.
Chem., Int. Ed., 2012, 51, 1962–1965.
2
8
9
3
M. Yang, L. Y. Wang, S. T. Xu and Z. M. Liu, J. Mater. 35 H. Xue, Z. H. Li, H. Dong, L. Wu, X. X. Wang and X. Z. Fu,
Chem. A, 2013, 1, 14206–14213.
Cryst. Growth Des., 2008, 8, 4469–4475.
0 G. J. Yang, Y. X. Wei, S. T. Xu, J. R. Chen, J. Z. Li, Z. M. Li, 36 L. Guo, X. J. Bao, Y. Fan, G. Shi, H. Y. Liu and D. J. Bai, J.
J. H. Yu and R. R. Xu, J. Phys. Chem. C, 2013, 117, 8214–8222. Catal., 2012, 294, 161–170.
1 M. Yang, P. Tian, C. Wang, Y. Y. Yuan, Y. Yang, S. T. Xu, 37 K. Liu, H. P. You, G. Jia, Y. H. Zheng, Y. J. Huang, Y. H. Song,
1
1
1
1
1
1
Y. L. He and Z. M. Liu, Chem. Commun., 2014, 50, 1845–1847.
2 S. Lin, J. Y. Li, R. P. Sharma, J. H. Yu and R. R. Xu, Top. Catal.,
M. Yang, L. H. Zhang and H. J. Zhang, Cryst. Growth Des.,
2010, 10, 790–797.
2
010, 53, 1304–1310.
38 L. Zhang, J. Bates, D. H. Chen, H. Y. Nie and Y. N. Huang, J.
Phys. Chem. C, 2011, 115, 22309–22319.
39 J. Tan, Z. M. Liu, X. H. Bao, X. C. Liu, X. W. Han, C. Q. He and
R. S. Zhai, Microporous Mesoporous Mater., 2002, 53, 97–108.
40 W. L. Shen, X. Li, Y. X. Wei, P. Tian, F. Deng, X. W. Han and
X. H. Bao, Microporous Mesoporous Mater., 2012, 158, 19–25.
3 P. F. Wang, D. X. Yang, J. Hu, J. A. Xu and G. Z. Lu, Catal.
Today, 2013, 212, 62.e61–62.e68.
4 T. Alvaro-Munoz, E. Sastre and C. Marquez-Alvarez, Catal.
Sci. Technol., 2014, 4, 4330–4339.
5 Q. M. Sun, N. Wang, G. Q. Guo and J. H. Yu, Chem. Commun.,
2015, 51, 16397–16400.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 47864–47872 | 47871