10.1002/anie.201706624
Angewandte Chemie International Edition
COMMUNICATION
[1]
[2]
a) R. Lin, A. P. Amrute, J. Pérez-Ramírez, Chem. Rev. 2017, 117,
4182-4247; b) J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez,
B. M. Weckhuysen, Chem. Rev. 2014, 114, 10613-10653.
In conclusion, we have discovered EuOCl as a highly
promising catalytic technology for the selective one-step
conversion of ethane and propane into olefins via
oxychlorination chemistry, providing the highest single-pass
yields of ethylene and propylene (90% and 40%, respectively)
among any existing technology for olefin production. The
performance of EuOCl was rationalized by (i) its balanced redox
properties that allows to functionalize the alkane and to avoid
combustion, and by (ii) its unpaired ability to dehydrochlorinate
the formed alkyl chloride to olefin, enabling the recycling of the
halogen source. Moreover, EuOCl is also able to selectively
process mixtures of methane, ethane, and propane to produce
ethylene and propylene. Finally, we demonstrated the scalability
of the EuOCl-based catalyst in extrudate form using widely
available carriers. Titanium oxide anatase was identified as the
best support for ethylene production, which maintained the
outstanding performance for over 150 h on stream at both
increased reactants partial pressure and by co-feeding water.
These results show the practical relevance of the EuOCl-based
chemistry for natural gas upgrading, and drives future research
on several macroscopic engineering aspects, such as heat
management, products separation (i.e. H2O, HCl, COx), reactor
design etc., for further demonstration of the applicability of this
highly promising catalytic technology, although relevant
solutions can be extrapolated from applied technologies.[11]
a) F. Cavani, N. Ballarini, A. Cericola, Catal. Today 2007, 127, 113-131;
b) T. Ren, M. Patel, K. Blok, Energy 2006, 31, 425-451; c) F. J. Brazdil,
Top. Catal. 2006, 38, 289-294.
[3]
[4]
E. McFarland, Science 2012, 338, 340-342.
a) C. A. Gärtner, A. C. van Veen, J. A. Lercher, ChemCatChem 2013, 5,
3196-3217; b) D. A. Goetsch, L. D. Schmidt, Science 1996, 271,
1560-1562; c) A. S. Bodke, D. A. Olschki, L. D. Schmidt, E. Ranzi,
Science 1999, 285, 712-715; d) R. Horn, R. Schlögl, Catal. Lett. 2015,
145, 23-39.
[5]
[6]
a) V. Paunović, G. Zichittella, R. Verel, A. P. Amrute, J. Pérez-Ramírez,
Angew. Chem. Int. Ed. 2016, 55, 15619-15623; Angew. Chem. 2016,
128, 15848-15852; b) G. Zichittella, V. Paunović, A. P. Amrute, J.
Pérez-Ramírez, ACS Catal. 2017, 7, 1805-1817.
a) L. Xueju, L. Jie, Z. Guangdong, Z. Kaiji, L. Wenxing, C. Tiexin, Catal.
Lett. 2005, 100, 153-159; b) J. P. Henley, M. E. Jones, D. A. Hickman,
K. A. Marshall, D. J. Reed, W. D. Clarke, M. M. Olken, L. E. Walko
(Dow Global Technologies Inc.), US-B1 6933417, 2005; c) R. T. Carrol,
E. J. De Witt, C. Falls, L. E. Trapasso (B. F. Goodrich Company), US
3173962, 1965; d) A. Shalygin, E. Paukshtis, E. Kovalyov, B.
Bal’zhinimaev, Front. Chem. Sci. Eng. 2013, 7, 279-288; e) C. Li, G.
Zhou, L. Wang, S. Dong, J. Li, T. Cheng, Appl. Catal., A 2011, 400,
104-110; f) D. Shi, R. Hu, Q. Zhou, L. Yang, Chem. Eng. J. 2016, 288,
588-595; g) A. E. Schweizer, M. E. Jones, D. A. Hickman (Dow Global
Technologies Inc.), US-B2 6984763, 2006.
[7]
a) V. Paunović, G. Zichittella, M. Moser, A. P. Amrute, J. Pérez-
Ramírez, Nat. Chem. 2016, 8, 803-809; b) M. Scharfe, P. A Lira-Parada,
A. P. Amrute, S. Mitchell, J. Pérez-Ramírez, J. Catal. 2016, 344, 524-
534; c) V. Paunović, R. Lin, M. Scharfe, A. P. Amrute, S. Mitchell, R.
Hauert, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2017,
Experimental Section
doi:10.1002/anie.201704406;
doi:10.1002/ange.201704406.
Angew.
Chem.
2017,
Details on the catalyst preparation, characterization, and
evaluation are provided as Supporting Information.
[8]
[9]
a) N. Rahimi, R. Karimzadeh, Appl. Catal., A 2011, 398, 1-17; b) H.
Zimmermann, R. Walzl, Ullmann’s Encyclopedia of Industrial Chemistry,
Vol. 13, Wiley-VCH, Weinheim, 2012, pp. 465-529.
B. G. Hashiguchi, M. M. Konnick, S. M. Bischof, S. J. Gustafson, D.
Devarajan, N. Gunsalus, D. H. Ess, R. A. Periana, Science 2014, 343,
1232-1237.
Acknowledgements
This work was supported by ETH Research Grant ETH-04 16-1
and by the Swiss National Science Foundation (project no.
200021-156107). Dr. Sharon Mitchell and Dr. Roland Hauert are
kindly acknowledged for performing the microscopy and XPS
measurements, respectively.
[10] a) E. N. Givens, C. J. Plank, E. J. Rosinki (Mobil Oil Corporation), US-A
3960978, 1974; b) A. Giusti, S. Gusi, G. Bellussi, V. Fattore
(Eniricerche S. P. A.), US-A 4831201, 1989.
[11] a) J. A. Cowfer, M. B. Gorensek, Kirk-Othmer Encyclopedia of
Chemical Technology, Wiley-VCH, Weinheim, 2006; b) Sulzer-
ChemTech Separation Technology for the Hydrocarbon Processing
c) Honeywll-UOP Technology for Purification of Olefin and Polymer
Process Streams, www.uop.com, accessed May 20th, 2017, 11:00 GMT.
Keywords: europium oxychloride • halogen chemistry •
heterogeneous catalysis • light olefins • natural gas upgrading
This article is protected by copyright. All rights reserved.