10.1002/chem.201705644
Chemistry - A European Journal
COMMUNICATION
Hagelin-Weaver, C. R. Bowers, Phys. Chem. Chem. Phys. 2015, 17,
26121–26129.
K. V. Kovtunov, I. E. Beck, V. V. Zhivonitko, D. a. Barskiy, V. I.
Bukhtiyarov, I. V. Koptyug, Phys. Chem. Chem. Phys. 2012, 14,
11008.
O. G. Salnikov, D. a. Barskiy, D. B. Burueva, Y. K. Gulyaeva, B. S.
Balzhinimaev, K. V. Kovtunov, I. V. Koptyug, Appl. Magn. Reson.
2014, 45, 1051–1061.
O. G. Salnikov, D. B. Burueva, E. Y. Gerasimov, A. V Bukhtiyarov, A.
K. Khudorozhkov, I. P. Prosvirin, L. M. Kovtunova, D. A. Barskiy, V.
I. Bukhtiyarov, K. V Kovtunov, et al., Catal. Today 2017, 283, 82–88.
E. W. Zhao, H. Zheng, K. Ludden, Y. Xin, H. E. Hagelin-Weaver, C.
R. Bowers, ACS Catal. 2016, 6, 974–978.
A. Corma, O. G. Salnikov, D. A. Barskiy, K. V. Kovtunov, I. V.
Koptyug, Chem. - A Eur. J. 2015, 21, 7012–7015.
O. G. Salnikov, H.-J. Liu, A. Fedorov, D. B. Burueva, K. V Kovtunov,
C. Coperet, I. V Koptyug, Chem. Sci. 2017, 8, 2426–2430.
E. W. Zhao, R. Maligal-Ganesh, C. Xiao, T.-W. Goh, Z. Qi, Y. Pei, H.
E. Hagelin-Weaver, W. Huang, C. R. Bowers, Angew. Chemie Int.
Ed. 2017, 56, 3925–3929.
O. G. Salnikov, K. V. Kovtunov, D. a. Barskiy, A. K. Khudorozhkov,
E. a. Inozemtseva, I. P. Prosvirin, V. I. Bukhtiyarov, I. V. Koptyug,
ACS Catal. 2014, 4, 2022–2028.
atoms in propene. The MRI of thermally polarized propene at the
same conditions is impossible due to an insufficient
concentration of protons. Therefore, these demonstrations of the
use of Pd-In/Al2O3 catalyst significantly impact the development
of PHIP applications in MRI, and the Pd-In/Al2O3 single-site
catalyst can be attractive for both medical and technical MRI
applications.
[29]
[30]
[31]
[32]
[33]
[34]
[35]
Acknowledgements
D.B.B., K.V.K thank the Russian Science Foundation (grant #
17-73-20030) for the support of MRI and NMR experiments.
I.S.M., G.N.B., A.Yu.S. thank the Russian Science Foundation
(grant #16-13-10530) for supporting the catalyst synthesis.
D.B.B. is also grateful to Haldor Topsøe A/S Ph.D. program for
financial support. D.B.B. and K.V.K. thank Alexey Romanov for
his contribution to MRI experiments.
[36]
[37]
K. V Kovtunov, D. a Barskiy, O. G. Salnikov, A. K. Khudorozhkov, V.
I. Bukhtiyarov, I. P. Prosvirin, I. V Koptyug, Chem. Commun.
(Camb). 2014, 50, 875–8.
[38]
[39]
E. W. Zhao, Y. Xin, H. E. Hagelin-Weaver, C. R. Bowers,
ChemCatChem 2016, 8, 2197–2201.
K. V. Kovtunov, M. L. Truong, D. a. Barskiy, I. V. Koptyug, A. M.
Coffey, K. W. Waddell, E. Y. Chekmenev, Chem. - A Eur. J. 2014,
20, 14629–14632.
Keywords: bimetallic catalysts •heterogeneous hydrogenation •
MRI • parahydrogen • parahydrogen-induced polarization
[40]
K. V. Kovtunov, A. S. Romanov, O. G. Salnikov, D. A. Barskiy, E. Y.
Chekmenev, I. V. Koptyug, Y. Eduard, Tomogr. A J. Imaging Res.
2016, 2, 49–55.
S. Zhang, L. Nguyen, J.-X. Liang, J. Shan, J. Liu, A. I. Frenkel, A.
Patlolla, W. Huang, J. Li, F. Tao, Nat. Commun. 2015, 6, 7938.
B. Han, R. Lang, B. Qiao, A. Wang, T. Zhang, Chinese J. Catal.
2017, 38, 1498–1507.
[1]
[2]
[3]
[4]
J. W. Emsley, J. Feeney, Prog. Nucl. Magn. Reson. Spectrosc.
2007, 50, 179–198.
J. J. Ziarek, D. Baptista, G. Wagner, J. Mol. Med. 2017, DOI
10.1007/s00109-017-1560-2.
V. I. Bakhmutov, Solid-State NMR in Materials Science: Principles
and Applications, CRC Press, 2011.
R. J. Gillies, NMR in Physiology and Biomedicine, Academic Press,
1994.
R. R. Ernst, Angew. Chemie Int. Ed. English 1992, 31, 805–823.
S. Posse, R. Otazo, S. R. Dager, J. Alger, J. Magn. Reson. Imaging
2013, 37, 1301–1325.
E. Van Reeth, I. Tham, Concepts Magn. Reson. 2012, 40A, 306–
325.
J. H. Ardenkjaer-Larsen, G. S. Boebinger, A. Comment, S. Duckett,
A. S. Edison, F. Engelke, C. Griesinger, R. G. Griffin, C. Hilty, H.
Maeda, et al., Angew. Chemie - Int. Ed. 2015, 54, 9162–9185.
P. Nikolaou, B. M. Goodson, E. Y. Chekmenev, Chem. - A Eur. J.
2015, 21, 3156–3166.
T. G. Walker, W. Happer, Rev. Mod. Phys. 1997, 69, 629–642.
A. Abragam, M. Goldman, Rep. Prog. Phys. 1978, 41, 395–467.
H. R. Ward, Acc. Chem. Res. 1972, 5, 18–24.
C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109,
5541–5542.
[41]
[42]
[43]
[44]
X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem.
Res. 2013, 46, 1740–1748.
[5]
[6]
B. Chen, U. Dingerdissen, J. G. E. Krauter, H. G. J. Lansink
Rotgerink, K. Möbus, D. J. Ostgard, P. Panster, T. H. Riermeier, S.
Seebald, T. Tacke, et al., Appl. Catal. A Gen. 2005, 280, 17–46.
G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton,
A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H.
Sykes, Science 2012, 335, 1209–1212.
M. Armbrüster, R. Schlögl, Y. Grin, Sci. Technol. Adv. Mater. 2014,
15, 34803.
L. Zhang, A. Wang, J. T. Miller, X. Liu, X. Yang, W. Wang, L. Li, Y.
Huang, C. Y. Mou, T. Zhang, ACS Catal. 2014, 4, 1546–1553.
X. Cao, A. Mirjalili, J. Wheeler, W. Xie, B. W. L. Jang, Front. Chem.
Sci. Eng. 2015, 9, 442–449.
J. Osswald, R. Giedigkeit, R. E. Jentoft, M. Armbruster, F. Girgsdies,
K. Kovnir, T. Ressler, Y. Grin, R. Schlogl, J. Catal. 2008, 258, 210–
218.
F. A. Marchesini, S. Irusta, C. Querini, E. Miró, Appl. Catal. A Gen.
2008, 348, 60–70.
M. García-Mota, B. Bridier, J. Pérez-Ramírez, N. López, J. Catal.
2010, 273, 92–102.
Q. Feng, S. Zhao, Y. Wang, J. Dong, W. Chen, D. He, D. Wang, J.
Yang, Y. Zhu, H. Zhu, et al., J. Am. Chem. Soc. 2017, 139, 7294–
7301.
[7]
[8]
[45]
[46]
[47]
[48]
[49]
[9]
[10]
[11]
[12]
[13]
[14]
R. W. Adams, J. a Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P.
Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. López-Serrano,
D. C. Williamson, Science 2009, 323, 1708–1711.
W. Wang, H. Hu, J. Xu, Q. Wang, G. Qi, C. Wang, X. Zhao, X. Zhou,
F. Deng, J. Phys. Chem. C 2018, doi:10.1021/acs.jpcc.7b11801.
C. R. Bowers, Encycl. Magn. Reson. 2007, 9, 750–770.
R. a. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C.
Williamson, G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc.
2012, 67, 1–48.
[50]
[51]
[52]
[15]
[16]
[17]
[53]
[54]
Y. Cao, Z. J. Sui, Y. Zhu, X. Zhou, D. Chen, ACS Catal. 2017, 7,
7835–7846.
[18]
[19]
[20]
[21]
[22]
M. G. Pravica, D. P. Weitekamp, Chem. Phys. Lett. 1988, 145, 255–
258.
P. V. Markov, G. O. Bragina, G. N. Baeva, O. P. Tkachenko, I. S.
Mashkovskii, I. A. Yakushev, M. N. Vargaftik, A. Y. Stakheev, Kinet.
Catal. 2016, 57, 625–631.
P. V. Markov, G. O. Bragina, G. N. Baeva, O. P. Tkachenko, I. S.
Mashkovskii, I. A. Yakushev, M. N. Vargaftik, A. Y. Stakheev, Kinet.
Catal. 2016, 57, 617–624.
P. V. Markov, G. O. Bragina, A. V. Rassolov, G. N. Baeva, I. S.
Mashkovsky, V. Y. Murzin, Y. V. Zubavichus, A. Y. Stakheev,
Mendeleev Commun. 2016, 26, 502–504.
P. V. Markov, G. O. Bragina, A. V. Rassolov, I. S. Mashkovsky, G. N.
Baeva, O. P. Tkachenko, I. A. Yakushev, M. N. Vargaftik, A. Y.
Stakheev, Mendeleev Commun. 2016, 26, 494–496.
Z. Wu, E. C. Wegener, H.-T. Tseng, J. R. Gallagher, J. W. Harris, R.
E. Diaz, Y. Ren, F. H. Ribeiro, J. T. Miller, Catal. Today 2016, 6,
6965–6976.
S. B. Duckett, D. Blazina, Eur. J. Inorg. Chem. 2003, 2003, 2901–
2912.
K. V. Kovtunov, V. V. Zhivonitko, I. V. Skovpin, D. A. Barskiy, I. V.
Koptyug, Top. Curr. Chem. 2013, 338, 123–180.
C. R. Bowers, D. P. Weitekamp, Phys. Rev. Lett. 1986, 57, 2645–
2648.
[55]
[56]
[57]
[58]
[59]
[60]
[61]
K. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V. Koptyug, Angew.
Chemie - Int. Ed. 2008, 47, 1492–1495.
[23]
[24]
A. M. Balu, S. B. Duckett, R. Luque, Dalt. Trans. 2009, 5074–5076.
D. A. Barskiy, A. M. Coffey, P. Nikolaou, D. M. Mikhaylov, B. M.
Goodson, R. T. Branca, G. J. Lu, M. G. Shapiro, V. Telkki, V. V.
Zhivonitko, et al., Chem. - A Eur. J. 2017, 23, 725–751.
K. V Kovtunov, D. A. Barskiy, A. M. Coffey, M. L. Truong, O. G.
Salnikov, A. K. Khudorozhkov, E. A. Inozemtseva, I. P. Prosvirin, V.
I. Bukhtiyarov, K. W. Waddell, et al., Chem. — A Eur. J. 2014, 20,
11636–11639.
D. A. Barskiy, K. V. Kovtunov, A. Primo, A. Corma, R. Kaptein, I. V.
Koptyug, ChemCatChem 2012, 4, 2031–2035.
V. V. Zhivonitko, K. V. Kovtunov, I. E. Beck, A. B. Ayupov, V. I.
Bukhtiyarov, I. V. Koptyug, J. Phys. Chem. C 2011, 115, 13386–
13391.
[25]
K. Kovnir, M. Armbrüster, D. Teschner, T. V. Venkov, F. C. Jentoft,
A. Knop-Gericke, Y. Grin, R. Schlögl, Sci. Technol. Adv. Mater.
2007, 8, 420–427.
M. Armbrüster, M. Behrens, F. Cinquini, K. Föttinger, Y. Grin, A.
Haghofer, B. Klötzer, A. Knop-Gericke, H. Lorenz, A. Ota, et al.,
ChemCatChem 2012, 4, 1048–1063.
[26]
[27]
D. a. Barskiy, O. G. Salnikov, K. V. Kovtunov, I. V. Koptyug, J. Phys.
Chem. A 2015, 119, 996–1006.
[28]
R. Zhou, W. Cheng, L. M. Neal, E. W. Zhao, K. Ludden, H. E.
This article is protected by copyright. All rights reserved.