Journal of the American Chemical Society
Page 6 of 8
composite by the guided assembly of boron nitride nanosheets for
flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29 (37),
1902575.
This work was supported by the National Natural Science
Foundation of China (51702365), the Key Research and
Development Plan of Shandong Province (2019GGX102056,
2018GGX104018), the Special Project Fund of “Taishan
Scholars” of Shandong Province (NO.ts201511017), the
Fundamental Research Funds for the Central Universities
(16CX05006A, 19CX05002A), New Faculty Start-up funding in
China University of Petroleum (East China) (YJ201501029). Dr.
J. Tang and Professor Y. Yamauchi are the recipients of
Discovery Early Career Researcher Award (DE190101410) and
Future Fellow (FT150100479), respectively, funded by the
Australian Research Council (ARC).
1
2
3
4
5
6
7
8
(15) Han, J.; Du, G.; Gao, W.; Bai, H. An anisotropically high
thermal conductive boron nitride/epoxy composite based on
nacre‐mimetic 3D network. Adv. Funct. Mater. 2019, 29 (13),
1900412.
(16) Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.;
Burt, S. P.; Specht, S. E.; McDermott, W. P.; Chieregato, A.;
Hermans, I. Selective oxidative dehydrogenation of propane to
propene using boron nitride catalysts. Science 2016, 354 (6319),
1570-1573.
9
(17) Grant, J. T.; Venegas, J. M.; McDermott, W. P.; Hermans, I.
Aerobic oxidations of light alkanes over solid metal oxide catalysts.
Chem. Rev. 2017, 118 (5), 2769-2815.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(18) Shi, L.; Wang, D.; Song, W.; Shao, D.; Zhang, W. P.; Lu, A. H.
Edge‐hydroxylated boron nitride for oxidative dehydrogenation of
propane to propylene. ChemCatChem 2017, 9 (10), 1788-1793.
(19) Cavani, F.; Trifiro, F. Some aspects that affect the selective
oxidation of paraffins. Catal. Today 1997, 36 (4), 431-439.
(20) Leveles, L.; Seshan, K.; Lercher, J.; Lefferts, L. Oxidative
conversion of propane over lithium-promoted magnesia catalyst: I.
Kinetics and mechanism. J. Catal. 2003, 218 (2), 296-306.
(21) Cavani, F.; Ballarini, N.; Cericola, A. Oxidative dehydrogenation
of ethane and propane: How far from commercial implementation?
Catal. Today 2007, 127 (1-4), 113-131.
(22) Shi, L.; Wang, D.; Lu, A. H. A viewpoint on catalytic origin of
boron nitride in oxidative dehydrogenation of light alkanes. Chin. J.
Catal. 2018, 39 (5), 908-913.
(23) Love, A. M.; Thomas, B.; Specht, S. E.; Hanrahan, M. P.;
Venegas, J. M.; Burt, S. P.; Grant, J. T.; Cendejas, M. C.; McDermott,
W. P.; Rossini, A. J.; Hermans, I. Probing the transformation of boron
nitride catalysts under oxidative dehydrogenation conditions. J. Am.
Chem. Soc. 2018, 141 (1), 182-190.
(24) Shi, L.; Wang, Y.; Yan, B.; Song, W.; Shao, D.; Lu, A. H.
Progress in selective oxidative dehydrogenation of light alkanes to
olefins promoted by boron nitride catalysts. Chem. Commun. 2018, 54
(78), 10936-10946.
(25) Acharyya, S. S.; Ghosh, S.; Bal, R. Fabrication of three
dimensional (3D) hierarchical Ag/WO3 flower-like catalyst materials
for the selective oxidation of m-xylene to isophthalic acid. Chem.
Commun. 2015, 51 (27), 5998-6001.
(26) Xu, Z.; Zhuang, X.; Yang, C.; Cao, J.; Yao, Z.; Tang, Y.; Jiang,
J.; Wu, D.; Feng, X. Nitrogen‐doped porous carbon superstructures
derived from hierarchical assembly of polyimide nanosheets. Adv.
Mater. 2016, 28 (10), 1981-1987.
(27) Shtansky, D. V.; Firestein, K. L.; Golberg, D. V. Fabrication and
application of BN nanoparticles, nanosheets and their nanohybrids.
Nanoscale 2018, 10 (37), 17477-17493.
(28) Zou, L.; Kitta, M.; Hong, J.; Suenaga, K.; Tsumori, N.; Liu, Z.;
Xu, Q. Fabrication of a Spherical Superstructure of Carbon Nanorods.
Adv. Mater. 2019, 31 (24), e1900440.
(29) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The
chemistry and applications of metal-organic frameworks. Science
2013, 341 (6149), 1230444.
(30) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and
synthesis of an exceptionally stable and highly porous metal-organic
framework. nature 1999, 402 (6759), 276.
(31) Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-
Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional
chemical and thermal stability of zeolitic imidazolate frameworks.
Proc. Natl. Acad. Sci. USA 2006, 103 (27), 10186-10191.
(32) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic
framework as a template for porous carbon synthesis. J. Am. Chem.
Soc. 2008, 130 (16), 5390-5391.
(1) Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D.
Functionalized hexagonal boron nitride nanomaterials: emerging
properties and applications. Chem. Soc. Rev. 2016, 45 (14), 3989-
4012.
(2) Luo, W.; Wang, Y.; Hitz, E.; Lin, Y.; Yang, B.; Hu, L. Solution
processed boron nitride nanosheets: synthesis, assemblies and
emerging applications. Adv. Funct. Mater. 2017, 27 (31), 1701450.
(3) Yang, Y.; Zhang, C.; Huang, D.; Zeng, G.; Huang, J.; Lai, C.;
Zhou, C.; Wang, W.; Guo, H.; Xue, W. Boron nitride quantum dots
decorated ultrathin porous g-C3N4: intensified exciton dissociation
and charge transfer for promoting visible-light-driven molecular
oxygen activation. Appl. Catal. B. 2019, 245, 87-99.
(4) Li, H.; Tay, R. Y.; Tsang, S. H.; Zhen, X.; Teo, E. H. T.
Controllable synthesis of highly luminescent boron nitride quantum
dots. Small 2015, 11 (48), 6491-6499.
(5) Golberg, D.; Bando, Y.; Tang, C.; Zhi, C. Boron nitride
nanotubes. Adv. Mater. 2007, 19 (18), 2413-2432.
(6) Weber, M.; Iatsunskyi, I.; Coy, E.; Miele, P.; Cornu, D.;
Bechelany, M. Novel and facile route for the synthesis of tunable
boron nitride nanotubes combining atomic layer deposition and
annealing processes for water purification. Adv. Mater. Interfaces
2018, 5 (16), 1800056.
(7) Chen, S.; Xu, R.; Liu, J.; Zou, X.; Qiu, L.; Kang, F.; Liu, B.;
Cheng, H. M. Simultaneous Production and functionalization of boron
nitride nanosheets by sugar‐assisted mechanochemical exfoliation.
Adv. Mater. 2019, 31 (10), 1804810.
(8) Uosaki, K.; Elumalai, G.; Noguchi, H.; Masuda, T.; Lyalin, A.;
Nakayama, A.; Taketsugu, T. Boron nitride nanosheet on gold as an
electrocatalyst for oxygen reduction reaction: Theoretical suggestion
and experimental proof. J. Am. Chem. Soc. 2014, 136 (18), 6542-
6545.
(9) Xue, Y.; Dai, P.; Jiang, X.; Wang, X.; Zhang, C.; Tang, D.; Weng,
Q.; Wang, X.; Pakdel, A.; Tang, C.; Bando, Y.; Golberg, D.
Template-free synthesis of boron nitride foam-like porous monoliths
and their high-end applications in water purification. J. Mater. Chem.
A. 2016, 4 (4), 1469-1478.
(10) Xue, Y.; Dai, P.; Zhou, M.; Wang, X.; Pakdel, A.; Zhang, C.;
Weng, Q.; Takei, T.; Fu, X.; Popov, Z. I. ; Sorokin, P. B.; Tang, C.;
Shinamura, K.; Bando, Y.; Golberg, D. Multifunctional superelastic
foam-like boron nitride nanotubular cellular-network architectures.
ACS Nano 2016, 11 (1), 558-568.
(11) Kim, K. B.; Jang, W.; Cho, J. Y.; Woo, S. B.; Jeon, D. H.; Ahn,
J. H.; Do Hong, S.; Koo, H. Y.; Sung, T. H. Transparent and flexible
piezoelectric sensor for detecting human movement with a boron
nitride nanosheet (BNNS). Nano Energy 2018, 54, 91-98.
(12) Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Hayat,
T.; Wang, X. Boron nitride-based materials for the removal of
pollutants from aqueous solutions: a review. Chem. Eng. J. 2018, 333,
343-360.
(13) Li, J.; Huang, Y.; Liu, Z.; Zhang, J.; Liu, X.; Luo, H.; Ma, Y.;
Xu, X.; Lu, Y.; Lin, J. Chemical activation of boron nitride fibers for
improved cationic dye removal performance. J. Mater. Chem. A.
2015, 3 (15), 8185-8193.
(14) Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.;
Ryu, H.; Kim, H.; Ma, Z.; Kim, T. I. Anisotropic thermal conductive
(33) Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.;
Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-
organic frameworks: a new method for selectively functionalized
nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137 (4), 1572-
1580.
ACS Paragon Plus Environment