Edge Article
Chemical Science
steric repulsion and torsional strain in the transition state
which further promote the exo stereoselectivity. Sequentially,
the external H2O trapped the cyclopentenyl cation II from the
endo face of the polycyclic system which is less bulky aer
electrocyclization. Finally, the intermediate IV was transformed
into 11-oxatricyclo[5.3.1.0]undecane 3 through hydrogen shi
and enol–keto tautomerism.
2010, 132, 8842–8843; (c) N. Shimada, M. Anada,
S. Nakamura, H. Nambu, H. Tsutsui and S. Hashimoto,
Org. Lett., 2008, 10, 3603–3606; (d) D. M. Hodgson,
´
A. H. Labande, F. Y. T. M. Pierard and M. A. Exposito
Castro, J. Org. Chem., 2003, 68, 6153–6159; (e) S. Kitagaki,
M. Anada, O. Kataoka, K. Matsuno, C. Umeda,
N. Watanabe and S.-I. Hashimoto, J. Am. Chem. Soc., 1999,
121, 1417–1418.
7 (a) J. Fu, Y. Gu, H. Yuan, T. Luo, S. Liu, Y. Lan, J. Gong and
Z. Yang, Nat. Commun., 2015, 6, 8617, DOI: 10.1038/
Conclusion
˜
ncomms9617; (b) H. Faustino, I. Alonso, J. L. Mascarenas
In summary, a novel homogeneous gold-catalyzed tandem 1,3-
acyloxy migration/Ferrier rearrangement was developed
successfully to access disubstituted 8-oxabicyclo[3.2.1]octane
with high efficiency and complete diastereoselectivity using
glycal-derived propargylic esters. The resultant products could
then undergo an interrupted Nazarov cyclization serving as an
efficient strategy for the facile synthesis of diastereomerically
pure 11-oxatricyclo[5.3.1.0]undecanes which was applied to
synthesize the core structure of homalomenol C. More studies
on mechanism and natural product synthesis are currently in
progress.
˜
and F. Lopez, Angew. Chem., Int. Ed., 2013, 52, 6526–6530;
(c) B. Li, Y.-J. Zhao, Y.-C. Lai and T. P. Loh, Angew. Chem.,
Int. Ed., 2012, 51, 8041–8045.
8 (a) K. C. Nicolaou, D. J. Edmonds and P. G. Bulger, Angew.
Chem., Int. Ed., 2006, 45, 7134–7186; (b) J.-C. Wasilke,
S. J. Obrey, R. T. Baker and G. C. B. Bazan, Chem. Rev.,
2005, 105, 1001–1020.
9 (a) A. S. K. Hashmi, W. Yang, Y. Yu, M. M. Hansmann,
M. Rudolph and F. Rominger, Angew. Chem., Int. Ed., 2013,
52, 1329–1332; (b) J. W. Cran and M. E. Kra, Angew.
Chem., Int. Ed., 2012, 51, 9398–9402; (c) W. Rao, D. Susanti
and P. W. H. Chan, J. Am. Chem. Soc., 2011, 133, 15248–
15251; (d) S. Bhunia and R.-S. Liu, J. Am. Chem. Soc., 2008,
Acknowledgements
´
130, 16488–16489; (e) N. Marion, P. de Fremont,
We gratefully acknowledge Nanyang Technological University
(RG6/13 and RG132/14) and the Ministry of Education, Singa-
pore (MOE 2013-T3-1-002) for the nancial support of this
research. We thank Dr Ganguly Rakesh for X-ray analysis.
`
G. Lemiere, E. D. Stevens, L. Fensterbank, M. Malacria and
S. P. Nolan, Chem. Commun., 2006, 2048–2050; (f) L. Zhang
and S. Wang, J. Am. Chem. Soc., 2006, 128, 1442–1443; (g)
A. Buzas and F. Gagosz, J. Am. Chem. Soc., 2006, 128,
12614–12615; (h) X. Shi, D. J. Gorin and F. D. Toste, J. Am.
Chem. Soc., 2005, 127, 5802–5803; (i) V. Mamane, T. Gress,
Notes and references
¨
1 R. Ratnayake, D. Covell, T. T. Ransom, K. R. Gustafson and
H. Krause and A. Furstner, J. Am. Chem. Soc., 2004, 126,
J. A. Beutler, Org. Lett., 2009, 11, 57–60.
8654–8655.
2 J. Xu, D. Q. Jin, C. Liu, C. Xie, Y. Guo and L. Fang, J. Agric. 10 F. D. Toste, in Modern Gold Catalyzed Synthesis, ed. A. S. K.
Food Chem., 2012, 60, 8051–8058.
3 (a) L. R. Salgueiro, R. Vila, F. Tomi, X. Tomas, S. Canigueral,
Hashmi and F. D. Toste, Wiley-VCH, Weinheim, 2012, pp.
75–134.
˜
J. Casanava, A. P. D. Cunha and T. Adzet, Phytochemistry, 11 (a) R. Dorel and A. M. Echavarren, Chem. Rev., 2015, 115,
1997, 45, 1177–1183; (b) T. V. Sung, L. Kutschabsky,
A. Porzel, W. Steglich and G. Adam, Phytochemistry, 1992,
31, 1659–1661.
4 (a) B. Lo, S. Lam, W.-T. Wong and P. Chiu, Angew. Chem., Int.
Ed., 2012, 51, 12120–12123; (b) J. Huang and R. P. Hsung, J.
Am. Chem. Soc., 2005, 127, 50–51; (c) M. Harmata,
S. K. Ghosh, X. Hong, S. Wacharasindhu and
P. Kirchhoefer, J. Am. Chem. Soc., 2003, 125, 2058–2059; (d)
C. B. W. Stark, U. Eggert and H. M. R. Hoffmann, Angew.
Chem., Int. Ed., 1998, 37, 1266–1268.
9028–9072; (b) L. Fensterbank and M. Malacria, Acc. Chem.
Res., 2014, 47, 953–965; (c) R. K. Shiroodi and
V. Gevorgyan, Chem. Soc. Rev., 2013, 42, 4991–5001; (d)
X.-Z. Shu, D. Shu, C. M. Schienebeck and W. Tang, Chem.
Soc. Rev., 2012, 41, 7698–7711; (e) A. S. Dudnik,
N. Chernyak and V. Gevorgyan, Aldrichimica Acta, 2010, 43,
37–46; (f) S. Wang, G. Zhang and L. Zhang, Synlett, 2010,
692–706; (g) D. J. Gorin, B. D. Sherry and F. D. Toste,
´
˜
´
Chem. Rev., 2008, 108, 3351–3378; (h) E. Jimenez-Nunez
and A. M. Echavarren, Chem. Commun., 2007, 333–346; (i)
A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180–3211.
5 (a) A. Orue, U. Uria, E. Reyes, L. Carrillo and J. L. Vicario,
Angew. Chem., Int. Ed., 2015, 54, 3043–3046; (b) 12 (a) S. P. Simeonov, J. P. Nunes, K. Guerra, V. B. Kurteva and
M. R. Witten and E. N. Jacobsen, Angew. Chem., Int. Ed.,
2014, 53, 5912–5916; (c) N. Z. Burns, M. R. Witten and
E. N. Jacobsen, J. Am. Chem. Soc., 2011, 133, 14578–14581;
C. A. Afonso, Chem. Rev., 2016, 116, 5744–5893; (b) M. J. Di
Grandi, Org. Biomol. Chem., 2014, 12, 5331–5345; (c)
M. A. Cavitt, L. H. Phun and S. France, Chem. Soc. Rev.,
2014, 43, 804–818; (d) W. T. Spencer III, T. Vaidya and
A. J. Frontier, Eur. J. Org. Chem., 2013, 3621–3633; (e)
N. Shimada, C. Stewart and M. A. Tius, Tetrahedron, 2011,
67, 5851–5870; (f) T. N. Grant, C. J. Rieder and F. G. West,
Chem. Commun., 2009, 5676–5688; (g) H. Pellissier,
´
˜
(d) F. Lopez, L. Castedo and J. L. Mascarenas, Org. Lett.,
2002, 4, 3683–3685.
6 (a) F. Rodier, M. Rajzmann, J.-L. Parrain, G. Chouraqui and
L. Commeiras, Chem.–Eur. J., 2013, 19, 2467–2477; (b)
K. Ishida, H. Kusama and N. Iwasawa, J. Am. Chem. Soc.,
This journal is © The Royal Society of Chemistry 2017
Chem. Sci.