Page 3 of 5
Dalton Transactions
Please do not adjust margins
Journal Name
COMMUNICATION
1 (a) P. Jeschke, ChemBioChem, 2004,
Sander and M. Stahl, ChemBioChem,200D4,OI: 10.1039/C5DT02214B
5, 637; (c) K. Müller,
5
C. Faeh and F. Diederich, Science, 2007, 317, 1881; (d) S.
Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc.
Rev., 2008, 37, 320; (e) W. K. Hagmann, J. Med. Chem., 2008,
51, 4359.
2 (a) G. K. S. Prakash and A. K. Yudin, Chem. Rev., 1997, 97, 757;
(b) P. T. Nyffeler, S. G. Durón, M. D. Burkart, S. P. Vincent and
C. –H. Wong, Angew. Chem. Int. Ed., 2005, 44, 192; (c) M.
Schlosser, Angew. Chem. Int. Ed., 2006, 45, 5432; (d) N.
Shibata, T. Ishimaru, S. Nakamura and T. Toru, J. Fluorine Chem.
2007, 128. 469; (e) J. Nie, H. –C. Guo, D. Cahard and J. –M. Ma,
Chem. Rev., 2011, 111, 455; (f) T. Liang, C. N. Neumann and T.
Ritter, Angew. Chem. Int. Ed., 2013, 52, 8214; (g) L. Chu and F.
–L. Qing, Acc. Chem. Res., 2014, 47, 1513; (h) A. J. Cresswell, S.
G. Davies, P. M. Roberts and J. E. Thomson, Chem. Rev., 2015,
115, 566; (i) M. G. Campbell and T. Ritter, Chem. Rev., 2015,
115, 612; (j) X.-H. Xu, K. Matsuzaki and N. Shibata, Chem. Rev.,
2015, 115, 731; (k) Y. –Y. Huang, X. Yang, Z. Chen, F. Verpoort
and N. Shibata, Chem. Eur. J., 2015, 21, 8664; (l) R. Smits, C. D.
Scheme 3 Trifluoromethylthiolation of boronic acids 4a-i (isolation
yields, reaction conditions: 4 (0.25 mmol), 1 (0.50 mmol) and Cu(OAc)2
(0.30 mmol) in DMAc (1.25 ml), 80 C, 10 h under N2).
Cadicamo, K. Burgger and B. Koksch, Chem. Soc. Rev., 2008, 37
,
1727; (m) O. A. Tomashenko and V. V. Grushin, Chem. Rev.,
2011, 111, 4475.
3 (a) T. Ishimaru, N. Shibata, T. Horikawa, N. Yasuda, S.
Nakamura, T. Toru and M. Shiro, Angew. Chem. Int. Ed., 2008,
47, 4157; (b) T. Furukawa, N. Shibata, S. Mizuta, S. Nakamura,
T. Toru and M. Shiro. Angew. Chem. Int. Ed., 2008, 47, 8051;
(c) T. Furukawa, J. Kawazoe, W. Zhang, T. Nishimine, E.
Tokunaga, T. Matsumoto, M. Shiro and N. Shibata, Angew.
Chem. Int. Ed., 2011, 50, 9684.
4 (a) S. Noritake, N. Shibata, S. Nakamura, T. Toru and M. Shiro,
Eur. J. Org. Chem., 2008, 3465; (b) A. Matsnev, S. Noritake, Y.
Nomura, E. Tokunaga, S. Nakamura and N. Shibata, Angew.
Chem. Int. Ed., 2010, 49, 572; (c) S. Arimori and N. Shibata, Org.
Lett., 2015, 17, 1632.
Conclusions
We have succeeded in the synthesis of both
trifluoromethylsulfinyl and trifluoromethylthio compounds using
trifluoromethanesulfonyl hypervalent iodonium ylide
copper catalysis. The reaction of various allyl alcohols 2 with 1 in
the presence of catalytic amount of CuF2 furnished
trifluoromethylsulfinyl compounds instead of trifluoromethylthio
compounds via a [2,3]-sigmatropic rearrangement. On the other
hand, trifluoromethylthiolation of boronic acids 4 with 1 under
1 under
a
5 Y. -D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro and
N. Shibata, J. Am. Chem. Soc., 2013, 135, 8782.
6 T. Le, V. C. Epa, F. R. Burden and D. A. Winkler, Chem. Rev.,
2012, 112, 2889.
similar
reaction
conditions
using
Cu(OAc)2
provided
trifluoromethylthio compounds in moderate yields via a cross
coupling reaction. Although the same reactions providing 3 and 5
have been reported using “other trifluoromethylthiolation reagents”
under different conditions, these “trifluoromethylthiolation
reagents” themselves should be prepared in advance by
“trifluoromethylthiolation or related trifluoromethylation”. On the
other hand, our reagent 1 can be prepared form ubiquitous CF3SO2
7 (a) A. Tlili and T. Billard, Angew. Chem. Int. Ed., 2013, 52, 6818;
(b) X. –H. Xu, K. Matsuzaki and N. Shibata, Chem. Rev., 2015,
115, 731; (c) X. Yang, T. Wu, R. J. Phipps, F. D and Toste, Chem.
Rev., 2015, 115, 826; (d) J. –B. Liu, X. –H. Xu, Z. –H. Chen and F.
–L. Qing, Angew. Chem. Int. Ed., 2015, 54, 897; (e) A. Ferry, T.
Billard, B. R. Langlois and E. Baqué, Angew. Chem. Int. Ed.,
2009, 48, 8551; (f) F. Baert, J. Colomb, T. Billard. Angew. Chem.
Int. Ed., 2012, 51, 10382; (g) F. Hu, S. Dianhu, L. Lu and Q. Shen,
Angew. Chem. Int. Ed., 2014, 53, 6105; (h) T. Yang and L. Lu, Q.
Shen, Chem. Commun., 2015, 51, 5479; (i) X. Shao, T. Liu, L. Lu
and Q. Shen. Org. Lett., 2014, 16, 4738; (j) Z. Weng, W. He, C.
Chen, R. Lee, D. Tan, Z. Lai, D. Kong, Y. Yuan and K. –W. Huang,
Angew. Chem. Int. Ed., 2013, 52, 1548; (k) S. –Q. Zhu, X. –H. Xu
and F. –L. Qing, Eur. J. Org. Chem., 2014, 4453; (l) Y. H, X. He, H.
Li, Z. Weng, Eur. J. Org. Chem., 2014, 7324; (m) D. J. Adams, A.
Goddard, J. H. Clark and D. J. Macquarrie, Chem, Commun.,
2000, 987; (n) C. –P. Zhang and D. A. Vicic, J. Am. Chem. Soc.,
2012, 134, 183; (o) C. Chen, L. Chu and F. –L. Qing, J. Am. Chem.
Soc., 2012, 134, 12454. (p) L. Dieu, I. Popov and O. Daugulis, J.
Am. Chem. Soc., 2012, 134, 18237; (q) S. –G. Li and S. Z. Zard,
Org. Lett., 2013, 15, 5898. (r) Y. Huang, X. He, X. Lin, M. Rong
and Z. Weng, Org. Lett., 2014, 16, 3284; (s) C. Xu and Q. Shen.,
Org. Lett., 2014, 16, 2064; (t) F. Yin and X. –S. Wang, Org. Lett.,
2014, 16, 1128; (u) W. Wu, X. Zhang, F. Liang and S. Cao, Org.
Biomol. Chem., DOI: 10.1039/c5ob00960j; (v) R. Honeker, J. B.
Ernst and F. Glorius. Chem. Eur. J. 2015, 21, 8047; (w) Y. Huang,
compounds
trifluoromethylthiolation reagent. These results show the further
expansion of the scope and utility of reagent for
such
as
CF3SO2Na,
without
using
any
1
trifluoromethylthiolations. A separate study will focus on this
aspect of the chemistry of 1 as well as further applications to
accommodate a broader range of reactions.
Acknowledgements
This research was financially supported in part by the Platform for
Drug Discovery, Informatics, and Structural Life Science from MEXT
Japan, the Advanced Catalytic Transformation (ACT-C) from the
Japan Science and Technology (JST) Agency, and the Kobayashi
International Foundation.
References
J. Ding, C. Wu, H. Zheng and Z. Weng, J. Org. Chem., 2015, 80
2912; (x) O. G. Mancheño and C. Bolm, Org. Lett., 2006,
,
,
8
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins