V. Ya. Sosnovskikh et al. / Tetrahedron Letters 52 (2011) 6271–6274
6273
The structures of compounds 8 and 9 were confirmed by spectro-
scopic data, including IR, NMR (1H, 19F, and 13C), and elemental anal-
ysis; assignmentof all thesignals was accomplishedbased onresults
from 2D 1H–13C, HSQC, and HMBC experiments. In the 1H NMR spec-
tra of compounds 8a–d and 9a–c in DMSO-d6, the most downfield
shifted signals were assigned to the OH proton (d 8.0–8.3 for 8 and
11.6–11.8 for 9), H-1 (d 8.21–8.38 for 8 and 8.29–8.54 for 9), and
H-10 (d 7.73–7.80 for 8 and 7.99–8.17 for 9). The position of the
OH signal can be explained by the intramolecular hydrogen bond
present in 9. In the 19F NMR spectra the CF3 group manifests itself
at ꢀ63.1 to ꢀ63.5 ppm for 8a–d and ꢀ60.0 ppm for 9a–c. The most
informative and strong cross-peaks in the 2D HMBC spectra for 9a
are as follows: H-10/C-6a, H-10/C-10b, H-10/C-8, H-10/CF3, H-10/
C-6, H-10/CO2Et, H-1/C-3, H-1/C-10a, H-1/C-4a. In the IR spectra of
compounds 8 and 9, a highly characteristic nitrile absorption at
2220–2225 cmꢀ1 and carbonyl bonds at 1720–1741 and 1679–
1682 cmꢀ1, respectively, were observed.
For the formation of products 8 and 9 a plausible mechanism is
depicted in Scheme 3. There are two possible routes to these com-
pounds. In the first (path a), initial nucleophilic attack of the
base-activated methylene compound at C-2 followed by Claisen
condensation (intermediate A, the initial Claisen self-condensation
of the starting ester could not be excluded), intramolecular cycliza-
tion, and dehydration (intermediate B), and then by aromatization
(after hydrolysis and decarboxylation) leads to compounds 8 or 9
through the involvement of phenolic hydroxy group. The second
route (path b) implies initial double nucleophilic attack at the
electrophilic C-2 and C-4 atoms (intermediate C) followed by intra-
molecular cyclization (intermediate D), aromatization, and lacton-
ization (Scheme 3). As diethyl 1,3-acetonedicarboxylate can be
used in this multi-step transformation, we believe that ‘path a’ is
more preferred. The formation of 3,4-benzoannulated coumarins 8
and 9 is strictly linked to their high thermodynamic stability which
represents the driving force of the process. Clearly, the most signif-
icant difference between the reactions of chromones 5 with cya-
noacetamides, and related reactions with the other compounds
containing an active methylene group, such as ethyl cyanoacetate
and diethyl malonate, is the failure of cyanoacetamides to form
1:2 adducts. This failure may be attributed to the readiness with
which 1:l adducts undergo ring closure involving the amide group
to form 2-pyridones 7.
In conclusion, we have shown, for the first time, that the con-
densation of 2-(trifluoromethyl)chromones with active methylene
compounds in the presence of sodium ethoxide affords two types
of products: 6-(2-hydroxyaryl)-3-cyano-4-(trifluoromethyl)-2-
pyridones with cyanoacetamides and 7-hydroxy-9-(trifluoro-
methyl)-6H-benzo[c]chromen-6-ones with ethyl cyanoacetate
and diethyl malonate. The latter reaction is a straightforward and
convenient route to functionalized benzo[c]coumarins and has
advantages with regard to ease of operation and the ready avail-
ability of starting materials.
Acknowledgment
This work was supported financially by the Russian Foundation
for Basic Research (Grant 11-03-00126).
References and notes
1. Ellis, G. P. Chromenes, Chromanones and Chromones In The Chemistry of
Heterocyclic Compounds; Wiley: New York, 1977; Vol. 31.
2. (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893–930;
(b) De Meyer, N.; Haemers, A.; Mishra, L.; Pandey, H.-K.; Pieters, L. A. C.; Van
den Berghe, D. A.; Vlietinck, A. J. J. Med. Chem. 1991, 34, 736–746; (c) Nohara,
A.; Kuriki, H.; Saijo, T.; Ukawa, K.; Murata, T.; Kanno, M.; Sanno, Y. J. Med. Chem.
1975, 18, 34–37; (d) Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.;
Sanno, Y. J. Med. Chem. 1977, 20, 141–145; (e) Ellis, G. P.; Becket, G. J. P.; Shaw,
D.; Wilson, N. K.; Vardey, C. J.; Skidmore, I. F. J. Med. Chem. 1978, 21, 1120–
1126; (f) Bolos, J.; Gubert, S.; Anglada, L.; Planas, J. M.; Burgarolas, C.; Castello, J.
M.; Sacristán, A.; Ortiz, J. A. J. Med. Chem. 1996, 39, 2962–2970.
3. (a) Langer, P. Synlett 2007, 1016–1025; (b) Sabitha, G. Aldrichim. Acta 1996, 29,
15–25; (c) Ghosh, C. K.; Patra, A. J. Heterocycl. Chem. 2008, 45, 1529–1547; (d)
Nohara, A.; Umetani, T.; Ukawa, K.; Sanno, Y. Chem. Pharm. Bull. 1974, 22, 2959–
2965; (e) Ukawa, K.; Ishiguro, T.; Wada, Y.; Nohara, A. Heterocycles 1986, 24,
1931–1941; (f) Hsung, R. P. J. Org. Chem. 1997, 62, 7904–7905.
4. (a) Ghosh, C. K. J. Heterocycl. Chem. 1983, 20, 1437–1445; (b) Morin, C.;
Beugelmans, R. Tetrahedron 1977, 33, 3183–3192; (c) Ibrahim, M. A.; Ali, T. E.;
Alnamer, Y. A.; Gabr, Y. A. Arkivoc 2010, i, 98–135; (d) Chosh, C. K. J. Heterocycl.
Chem. 2006, 43, 813–820.
5. (a) Eiden, F.; Engelhardt, A. Arch. Pharm. 1967, 300, 211–225; (b) Mahmoud, M.
R.; Amine, M. S.; Guirgius, D. B. Indian J. Chem. 1993, 32B, 427–430; (c) Al Naimi,
I. S.; Hussain, B. A. Qatar. Univ. Sci. J. 1992, 12, 73–79.
6. Zeid, I.; El-Bary, H. A.; Yassin, S.; Zahran, M. Liebigs Ann. Chem. 1984, 186–190.
7. Ibrahim, S. S.; El-Shaaer, H. M.; Hassan, A. Phosphorus, Sulfur, Silicon 2002, 177,
151–172.
8. Sosnovskikh, V. Y. Uspekhi Khim. 2003, 72, 550–578. (Russ. Chem. Rev. 2003, 72,
489–516).
9. (a) Sosnovskikh, V. Y.; Sevenard, D. V.; Usachev, B. I.; Röschenthaler, G.-V.
Tetrahedron Lett. 2003, 44, 2097–2099; (b) Sosnovskikh, V. Y.; Usachev, B. I.;
Sevenard, D. V.; Röschenthaler, G.-V. J. Org. Chem. 2003, 68, 7747–7754; (c)
Sosnovskikh, V. Y.; Usachev, B. I.; Sizov, A. Y.; Barabanov, M. A. Synthesis 2004,
942–948; (d) Sosnovskikh, V. Y.; Usachev, B. I.; Sizov, A. Y.; Kodess, M. I.
Tetrahedron Lett. 2004, 45, 7351–7354; (e) Sosnovskikh, V. Y.; Usachev, B. I.;
Sevenard, D. V.; Röschenthaler, G.-V. Tetrahedron 2003, 59, 2625–2630; (f)
Castaneda, I. C. H.; Ulic, S. E.; Védova, C. O. D.; Metzler-Nolte, N.; Jios, J. L.
Tetrahedron Lett. 2011, 52, 1436–1440.
X
CO2Et
O
O
X
EtO2C
X
X
O
CF3
CF3
R
R
R
R
OH
OH
A
B
path a
CF3
X
O
10. Sosnovskikh, V. Y.; Usachev, B. I.; Permyakov, M. N.; Sevenard, D. V.;
Röschenthaler, G.-V. Izv. Akad Nauk, Ser. Khim. 2006, 1628–1630 (Russ. Chem.
Bull., Int. Ed. 2006, 55, 1687–1689).
11. Sidwell, W. T. L.; Fritz, H.; Tamm, C. Helv. Chim. Acta 1971, 54, 207–215.
12. Tamm, C. Arzneim. -Forsch. 1972, 22, 1776–1784.
13. Raistrick, H.; Stickings, C. E.; Thomas, R. Biochem. J. 1953, 55, 421–433.
14. Pero, R. W.; Harvan, D.; Blois, M. C. Tetrahedron Lett. 1973, 14, 945–948.
15. (a) Hussain, I.; Nguyen, V. T. H.; Yawer, M. A.; Dang, T. T.; Fischer, C.; Reinke, H.;
Langer, P. J. Org. Chem. 2007, 72, 6255–6258; (b) Nguyen, V. T. H.; Langer, P.
Tetrahedron Lett. 2005, 46, 1013–1015.
2 XCH2CO2Et
EtONa
CF3
OH
O
O
Y
5
8 (X = CN, Y = NH),
9 (X = CO2Et, Y = O)
path b
OEt
O
16. (a) Appel, B.; Saleh, N. N. R.; Langer, P. Chem. Eur. J. 2006, 12, 1221–1236; (b)
Ullah, E.; Appel, B.; Fischer, C.; Langer, P. Tetrahedron 2006, 62, 9694–9700; (c)
Lubbe, M.; Appel, B.; Flemming, A.; Fischer, C.; Langer, P. Tetrahedron 2006, 62,
11755–11759; (d) Langer, P.; Appel, B. Tetrahedron Lett. 2003, 44, 5133–5135.
17. Terzidis, M. A.; Tsoleridis, C. A.; Stephanidou-Stephanatou, J.; Terzis, A.;
Raptopoulou, C. P.; Psycharis, V. Tetrahedron 2008, 64, 11611–11617.
18. Fatunsin, O.; Iaroshenko, V. O.; Dudkin, S.; Mkrtchyan, S.; Villinger, A.; Langer,
P. Tetrahedron Lett. 2010, 51, 4693–4695.
O
X
CO2Et
X
CF3
X
CO2Et
X
CF3
R
R
OH
OH
C
D
19. Iaroshenko, V. O.; Abbasi, M. S. A.; Villinger, A.; Langer, P. Tetrahedron Lett.
20. Portnoy, S. J. Org. Chem. 1965, 30, 3377–3380.
Scheme 3. Possible mechanism for the formation of products 8 and 9.