10.1002/anie.201905540
Angewandte Chemie International Edition
RESEARCH ARTICLE
[1] Handbook of Functionalized Organometallics: Applications in
Synthesis, Blackwell Science Publ, Oxford, 2005.
OH
Ph
O
O
R
R
a
f
[2] a) J. Montgomery, Angew. Chem. Int. Ed. 2004, 43, 3890-3908; b) S.
S. Ng, C. Y. Ho, K. D. Schleicher, T. F. Jamison, Pure. Appl. Chem.
2008, 80, 929-939; c) K. Sato, M. Isoda, Y. Tokura, K. Omura, A. Tarui,
M. Omote, I. Kumadaki, A. Ando, Tetrahedron Lett. 2013, 54, 5913-
5915.
[3] a) K. D. Nguyen, B. Y. Park, T. Luong, H. Sato, V. J. Garza, M. J.
Krische, Science 2016, 354, aah5133 1-5; b) M. Holmes, L. A.
Schwartz, M. J. Krische, Chem. Rev. 2018, 118, 6026-6052; c) J. F.
Bower, I. S. Kim, R. L. Patman, M. J. Krische, Angew. Chem. Int. Ed.
2009, 48, 34-46; d) S. W. Kim, W. D. Zhang, M. J. Krische, Acc. Chem.
Res. 2017, 50, 2371-2380.
Ph
Ph
I
CO2Bn
CO2Bn
7
78%
11
76%
CO2Bn
R
c
b
d, e
8
70%
9
62%
10
79% (5:1 dr)
OH
OH
Me
HO
O
HN
Ph
CO2Bn
Ph
CO2Bn
Ph
CO2Bn
R
R
R
[4] For selected examples see: a) Y. Yang, I. B. Perry, G. Lu, P. Liu, S. L.
Buchwald, Science 2016, 353, 144-150; b) T. Y. Chen, R. Tsutsumi,
T. P. Montgomery, I. Volchkov, M. J. Krische, J. Am. Chem. Soc. 2015,
137, 1798-1801; c) A. M. Haydl, B. Breit, T. Liang, M. J. Krische,
Angew. Chem. Int. Ed. 2017, 56, 11312-11325; d) H. D. Xiao, G. Wang,
M. J. Krische, Angew. Chem. Int. Ed. 2016, 55, 16119-16122; e) M.
Takeda, A. Mitsui, K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 2019,
141, 3664-3669; f) R. Y. Liu, Y. Zhou, Y. Yang, S. L. Buchwald, J. Am.
Chem. Soc. 2019, 141, 2251-2256; g) R. A. Swyka, W. Zhang, J.
Richardson, J. C. Ruble, M. J. Krische, J. Am. Chem. Soc. 2019, 141,
1828-1832; h) A. Köpfer, B. Sam, B. Breit, M. J. Krische, Chem. Sci.
2013, 4, 1876-1880; i) C. Li, R. Y. Liu, L. T. Jesikiewicz, Y. Yang, P.
Liu, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 5062-5070; j) J. Li,
A. Preinfalk, N. Maulide, Angew. Chem. Int. Ed., 2019, 58, 5887-5890;
k) K. Cao, S. M. Tan, R. Lee, S. Yang, H. Jia, X. Zhao, B. Qiao, Z.
Jiang, J. Am. Chem. Soc. 2019, 141, 5437-5443.
[5] a) R. Sawaki, Y. Sato, M. Mori, Org. Lett. 2004, 6, 1131-1133; b) Y.
Sato, Y. Hinata, R. Seki, Y. Oonishi, N. Saito, Org. Lett. 2007, 9, 5597-
5599; c) B. Y. Park, K. D. Nguyen, M. R. Chaulagain, V. Komanduri,
M. J. Krische, J. Am. Chem. Soc. 2014, 136, 11902-11905; d) T. Liang,
W. D. Zhang, M. J. Krische, J. Am. Chem. Soc. 2015, 137, 16024-
16027.
[6] a) M. Kimura, D. Nojiri, M. Fukushima, S. Oi, Y. Sonoda, Y. Inoue, Org.
Lett. 2009, 11, 3794-3797; b) A. Groves, J. I. Martínez, J. J. Smith, H.
W. Lam, Chem. Eur. J. 2018, 24, 13432-13436.
Figure 6. Derivatization of Z-b-ester homoallylic alcohols. a) 10% Ph2Se2,
(NH4)2S2O8, b) 2% VO(acac)2, t-BuO2H, c) 2% Rh2(esp)2, hydroxylamine O-
sulfonic acid, d) Dess-Martin periodinane e) AlMe3, f) I2, NaHCO3. R = n-Pr, see
SI for complete details.
Conclusion
The Rh-catalyzed, formic acid mediated reductive coupling of
dienes and aldehydes provides a direct route to stereochemically
defined Z-homoallylic alcohols. The mildly reducing conditions
allow for tolerance towards functional groups that would interfere
with organometallic reagents or highly polarized hydride donors.
A complete absence of chain-walking isomerization is facilitated
by comparatively slow liberation of the active catalyst species
followed by rapid Rh–H insertion and trapping. This general
concept should be amendable to related chemoselective olefin
hydrofunctionalization processes.
[7] For related studies of Rh-allyl chain-walking isomerization see: a) M.
Callingham, B. M. Partridge, W. Lewis, H. W. Lam, Angew. Chem. Int.
Ed. 2017, 56, 16352-16356; b) S. E. Korkis, D. J. Burns, H. W. Lam,
J. Am. Chem. Soc. 2016, 138, 12252-12257; c) J. I. Martínez, J. J.
Smith, H. B. Hepburn, H. W. Lam, Angew. Chem. Int. Ed. 2016, 55,
1108-1112; d) H. B. Hepburn, H. W. Lam, Angew. Chem. Int. Ed. 2014,
53, 11605-11610.
Experimental Section
General Procedure: In an atmosphere controlled glovebox, [Rh(COD)Cl]2
(6.2 mg, 0.0125 mmol, 0.025 equiv.) and PPh3 (6.6 mg, 0.025 mmol, 0.05
equiv.) were weighed into separate one dram vials. To the vial containing
[Rh(COD)Cl]2 was added MeCN (1 mL) and the solution was transferred
into the vial containing PPh3. MeCN (0.4 mL) was used to wash the
remaining Rh solution into the vial containing the PPh3 catalyst mixture. To
a separate one dram vial was weighed diene (0.5 mmol, 1 equiv.) followed
by aldehyde (1.5 mmol, 3 equiv.). To this mixture was transferred the
catalyst solution using MeCN (0.3 mL) to rinse the remaining solution into
the reaction mixture. DIPEA (174 µL, 1 mmol, 2 equiv.) was added followed
by a freshly prepared 2 M HCO2H solution (0.3 mL, 0.6 mmol, 1.2 equiv).
A stir bar was added to the vial which was capped with a PTFE-lined cap,
taken out of the glovebox and placed in an aluminum block heated to 35
°C. The reaction progress was monitored periodically via 1H NMR. At
>95% conversion, the solution was diluted with toluene, concentrated and
purified by silica gel chromatography. Reactions set up without the use of
a glovebox and conducted under air provide similar results. See the SI for
complete details.
[8] F. K. Meng, X. B. Li, S. Torker, Y. Shi, X. Shen, A. H. Hoveyda, Nature
2016, 537, 387-393.
[9] For examples of Z-selective diene, alkyne, or allene functionalization
see: a) A. B. Pritzius, B. Breit, Angew. Chem. Int. Ed. 2015, 54, 15818-
15822; b) Z.-L. Tao, A. Adili, H.-C. Shen, Z.-Y. Han, L.-Z. Gong,
Angew. Chem. Int. Ed. 2016, 55, 4322-4326; c) S. M. Jing, V.
Balasanthiran, V. Pagar, J. C. Gallucci, T. V. RajanBabu, J. Am. Chem.
Soc. 2017, 139, 18034-18043; d) Y.-Y. Gui, N. Hu, X.-W. Chen, L. L.
Liao, T. Ju, J.-H. Ye, Z. Zhang, J. Li, D.-G. Yu, J. Am. Chem. Soc.
2017, 139, 17011-17014; e) C. Wang, W. J. Teo, S. Ge, Nat. Commun.
2017, 8, 2258 doi: 10.1038/s41467-017-02382-7; f) W. J. Teo, C.
Wang, Y. W. Tan, S. Ge, Angew. Chem. Int. Ed. 2017, 56, 4328-4332
g) Y. Luo, S. M. Wales, S. E. Korkis, I. D. Roy, W. Lewis, H. W. Lam,
Chem. Eur. J. 2018, 24, 8315-8319; h) Z. Wang, Z. Chen, S. Bai, W.
Li, X. Liu, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2012, 51, 2776-2779;
i) V. A. Schmidt, C. R. Kennedy, M. J. Bezdek, P. J. Chirik, J. Am.
Chem. Soc. 2018, 140, 3443-3453; j) M. K. Armstrong, M. B.
Goodstein, G. Lalic, G. J. Am. Chem. Soc. 2018, 140, 10233-10241.
k) T. Misaki, K. Kawano, T. Sugimura, J. Am. Chem. Soc. 2011, 133,
5695-5697; l) A. J. Mueller, M. P. Jennings, Org. Lett. 2007, 9, 5327-
5329; m) C. Jia, W. Lu, J. Oyamada, T. Kitamura, K. Matsuda, M. Irie,
Y. Fujiwara, J. Am. Chem. Soc. 2000, 122, 7252-7263
Acknowledgements
We acknowledge NSERC Canada and the Canadian Foundation
for Innovation for support.
[10] R. Dada, Z. Wei, R. Gui, R. J. Lundgren, Angew. Chem. Int. Ed. 2018,
57, 3981-3984.
[11] a) F. Shibahara, J. F. Bower, M. J. Krische, J. Am. Chem. Soc. 2008,
130, 6338-6339; b) R. L. Patman, M. R. Chaulagain, V. M. Williams,
M. J. Krische, J. Am. Chem. Soc. 2009, 131, 2066-2067; c) J. C.
Keywords: homogeneous catalysis • reductive coupling •
chemoselectivity • Z-alkenes • rhodium
This article is protected by copyright. All rights reserved.