Article
Biochemistry, Vol. 49, No. 39, 2010 8575
data describing the enzymatic production of FQA analogue 1
(Figure S12), data describing the enzymatic reconstitution of
FQA analogue 2 (Figure S13), and H NMR data for glyan-
26. Fedorova, N. D.; et al. (2008) Genomic islands in the pathogenic
filamentous fungus Aspergillus fumigatus. PLoS Genet. 4, e1000046.
27. Challis, G. L. (2008) Genome mining for novel natural product
discovery. J. Med. Chem. 51, 2618–2628.
1
trypine (GAT) (Figure S14). This material is available free of
28. Ames, B. D., and Walsh, C. T. (2010) Anthranilate-activating mod-
ules from fungal nonribosomal peptide assembly lines. Biochemistry
49, 3351–3365.
29. Wilkins, M. R.; et al. (1999) Protein identification and analysis tools in
the ExPASy server. Methods Mol. Biol. 112, 531–552.
REFERENCES
30. Liu, J.-F.; et al. (2005) Three-component one-pot total syntheses of
glyantrypine, fumiquinazoline F, and fiscalin B promoted by micro-
wave irradiation. J. Org. Chem. 70, 6339–6345.
€
1. Brase, S., Encinas, A., Keck, J., and Nising, C. F. (2009) Chemistry
and biology of mycotoxins and related fungal metabolites. Chem. Rev.
109, 3903–3990.
31. Quadri, L. E. N.; et al. (1998) Characterization of Sfp, a Bacillus
subtilis phosphopantetheinyl transferase for peptidyl carrier protein
domains in peptide synthetaseses. Biochemistry 37, 1585–1595.
32. Soding, J., Biegert, A., and Lupas, A. N. (2005) The HHpred
interactive server for protein homology detection and structure pre-
diction. Nucleic Acids Res. 33, W244–W248.
33. Greenhagen, B. T.; et al. (2008) Crystal structure of the pyocyanin
biosynthetic protein PhzS. Biochemistry 47, 5281–5289.
34. van Berkel, W. J. H., Kamerbeek, N. M., and Fraaije, M. W. (2006)
Flavoprotein monooxygenases, a diverse class of oxidative biocata-
lysts. J. Biotechnol. 124, 670–689.
2. D’Yakonov, A., and Telezhenetskaya, M. (1997) Quinazoline alka-
loids in nature. Chem. Nat. Compd. 33, 221–267.
3. Mhaske, S. B., and Argade, N. P. (2006) The chemistry of recently
isolated naturally occurring quinazolinone alkaloids. Tetrahedron 62,
9787–9826.
4. Avendano, C., and Menendez, J. C. (2003) Chemistry of pyrazino[2,1-
b]quinazoline-3,6-diones. Curr. Org. Chem. 7, 149–173.
5. Takahashi, C.; et al. (1995) Fumiquinazolines A-G, novel metabo-
lites of a fungus separated from a Pseudolabrus marine fish. J. Chem.
Soc., Perkin Trans. 1, 2345–2353.
6. Frisvad, J. C., Rank, C., Nielsen, K. F., and Larsen, T. O. (2009)
Metabolomics of Aspergillus fumigatus. Med. Mycol. 47, 53–71.
7. Larsen, T. O., Svendsen, A., and Smedsgaard, J. (2001) Biochemical
characterization of ochratoxin A-producing strains of the genus
Penicillium. Appl. Environ. Microbiol. 67, 3630–3635.
35. Lawen, A., and Traber, R. (1993) Substrate specificities of cyclosporin
synthetase and peptolide SDZ 214-103 synthetase. Comparison of
the substrate specificities of the related multifunctional polypeptides.
J. Biol. Chem. 268, 20452–20465.
36. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W., and Huson,
D. H. (2005) Specificity prediction of adenylation domains in non-
ribosomal peptide synthetases (NRPS) using transductive support
vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808.
37. Finking, R., and Marahiel, M. A. (2004) Biosynthesis of nonriboso-
mal peptides. Annu. Rev. Microbiol. 58, 453–488.
38. Ballou, D. P., Entsch, B., and Cole, L. J. (2005) Dynamics involved in
catalysis by single-component and two-component flavin-dependent
aromatic hydroxylases. Biochem. Biophys. Res. Commun. 338, 590–
598.
39. Abe, I., and Prestwich, G. D. (1999) Squalene epoxidase and oxidos-
qualene:lanosterol cyclase: Key enzymes in cholesterol biosynthesis.
In Comprehensive Natural Products Chemistry (Barton, D. H. R., and
Nakanishi, K., Eds.) pp 267-298, Pergamon, Oxford, U.K.
40. Kovaleva, E. G., and Lipscomb, J. D. (2008) Versatility of biological
non-heme Fe(II) centers in oxygen activation reactions. Nat. Chem.
Biol. 4, 186–193.
8. Han, X.-x., Xu, X.-y., Cui, C.-b., and Gu, Q.-q. (2007) Alkaloidal
compounds produced by a marine-derived fungus, Aspergillus fumi-
gatus H1-04, and their antitumor activities. Zhongguo Yaowu Huaxue
Zazhi 17, 232–237.
9. Gilbert, N. B., Montserrat, A., Paul, R. J., William, F., and Matthias,
K. (2000) Oxepinamides A-C and fumiquinazolines H-I: Bioactive
metabolites from a marine isolate of a fungus of the genus Acre-
monium. Chem.;Eur. J. 6, 1355–1360.
10. Wong, S. M.; et al. (1993) Fiscalins: New substance P inhibitors
produced by the fungus Neosartorya fischeri. Taxonomy, fermenta-
tion, structures, and biological properties. J. Antibiot. 46, 545–553.
11. Penn, J., Purcell, M., and Mantle, P. G. (1992) Biosynthesis of glyan-
trypine by Aspergillus clavatus. FEMS Microbiol. Lett. 92, 229–233.
12. Fremlin, L. J., Piggott, A. M., Lacey, E., and Capon, R. J. (2009)
Cottoquinazoline A and cotteslosins A and B, metabolites from an
Australian marine-derived strain of Aspergillus versicolor. J. Nat.
Prod. 72, 666–670.
41. Gillam, E. M. J., Notley, L. M., Cai, H., De Voss, J. J., and
Guengerich, F. P. (2000) Oxidation of indole by cytochrome P450
enzymes. Biochemistry 39, 13817–13824.
13. Larsen, T. O., Frydenvang, K., Frisvad, J. C., and Christophersen, C.
(1998) UV-guided isolation of alantrypinone, a novel Penicillium
alkaloid. J. Nat. Prod. 61, 1154–1157.
42. Chauhan, N.; et al. (2009) Reassessment of the reaction mechanism in
the heme dioxygenases. J. Am. Chem. Soc. 131, 4186–4187.
43. Heemstra, J. R., and Walsh, C. T. (2008) Tandem action of the O2-
and FADH2-dependent halogenases KtzQ and KtzR produce 6,7-
dichlorotryptophan for kutzneride assembly. J. Am. Chem. Soc. 130,
14024–14025.
44. Meyer, A., Wursten, M., Schmid, A., Kohler, H.-P. E., and Witholt,
B. (2002) Hydroxylation of indole by laboratory-evolved 2-hydroxy-
biphenyl 3-monooxygenase. J. Biol. Chem. 277, 34161–34167.
45. Balibar, C. J., and Walsh, C. T. (2006) In vitro biosynthesis of
14. Barrow, C. J., and Sun, H. H. (1994) Spiroquinazoline, a novel
substance P inhibitor with a new carbon skeleton, isolated from
Aspergillus flavipes. J. Nat. Prod. 57, 471–476.
15. Larsen, T. O., Franzyk, H., and Jensen, S. R. (1999) UV-guided
isolation of verrucines A and B, novel quinazolines from Penicillium
verrucosum structurally related to anacine from Penicillium aurantio-
griseum. J. Nat. Prod. 62, 1578–1580.
€
16. Leong, S.-l., Schnurer, J., and Broberg, A. (2008) Verrucine F, a
quinazoline from Penicillium verrucosum. J. Nat. Prod. 71, 1455–1457.
17. Schwarzer, D., Finking, R., and Marahiel, M. A. (2003) Nonriboso-
mal peptides: From genes to products. Nat. Prod. Rep. 20, 275–287.
18. Strieker, M., Tanovic, A., and Marahiel, M. A. (2010) Nonribosomal
peptide synthetases: Structures and dynamics. Curr. Opin. Struct.
Biol. 20, 234–240.
19. Eisfeld, K. (2009) Non-ribosomal peptide synthetases of fungi. In
Physiology and Genetics, pp 305-330, Springer-Verlag, Berlin.
20. Keating, T. A.; et al. (2001) Chain termination steps in nonribosomal
peptide synthetase assembly lines: Directed acyl-enzyme breakdown
in antibiotic and siderophore biosynthesis. ChemBioChem 2, 99–107.
21. Du, L., and Lou, L. (2009) PKS and NRPS release mechanisms.
J. Nat. Prod. 27, 255–278.
violacein from L-tryptophan by the enzymes VioA-E from Chromo-
bacterium violaceum. Biochemistry 45, 15444–15457.
46. Grubbs, A. W., Artman, G. D., III, Tsukamoto, S., and Williams,
R. M. (2007) A concise total synthesis of the notoamides C and D.
Angew. Chem., Int. Ed. 46, 2257–2261.
47. Ding, Y.; et al. (2010) Genome-based characterization of two pre-
nylation steps in the assembly of the stephacidin and notoamide
anticancer agents in a marine-derived Aspergillus sp. J. Am. Chem.
Soc. 132, 12733–12740.
48. Yin, W.-B., Grundmann, A., Cheng, J., and Li, S.-M. (2009) Ace-
tylaszonalenin biosynthesis in Neosartorya fischeri: Identification
of the biosynthetic gene cluster by genomic mining and functional
proof of the genes by biochemical investigation. J. Biol. Chem. 284,
100–109.
22. Walsh, C. T.; et al. (2001) Tailoring enzymes that modify nonriboso-
mal peptides during and after chain elongation on NRPS assembly
lines. Curr. Opin. Chem. Biol. 5, 525–534.
23. Samel, S. A., Marahiel, M. A., and Essen, L.-O. (2008) How to tailor
non-ribosomal peptide products: New clues about the structures and
mechanisms of modifying enzymes. Mol. BioSyst. 4, 387–393.
24. Latge, J.-P. (1999) Aspergillus fumigatus and aspergillosis. Clin.
Microbiol. Rev. 12, 310–350.
25. Nierman, W. C.; et al. (2005) Genomic sequence of the pathogenic and
allergenic filamentous fungus Aspergillus fumigatus. Nature 438,
1151–1156.
49. Sattely, E. S., and Walsh, C. T. (2008) A latent oxazoline electrophile
for N-O-C bond formation in pseudomonine biosynthesis. J. Am.
Chem. Soc. 130, 12282–12284.
50. Clardy, J., Springer, J. P., Buechi, G., Matsuo, K., and Wightman, R.
(1975) Tryptoquivaline and tryptoquivalone, two tremorgenic meta-
bolites of Aspergillus clavatus. J. Am. Chem. Soc. 97, 663–665.
51. Springer, J. P. (1979) The absolute configuration of nortryptoquiva-
line. Tetrahedron Lett., 339–342.