Angewandte Chemie International Edition
10.1002/anie.201805676
Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981; k) Y. Xia,
D. Qiu, J. Wang, Chem. Rev. 2017, 117, 13810; l) H. Keipour, V.
Carreras, T. Ollevier, Org. Biomol. Chem. 2017, 15, 5441.
expected aryl-substituted dihydroindoles 5n-s in excellent yields
(82-97%) and stereoselectivities (> 97% ee and > 99:1 dr).
With the allylic C-H insertion products 3 in hand, further
[4]. Selected reviews: a) C.-M. Che, J.-S. Huang, Coord. Chem. Rev.
2
2
002, 231, 151; b) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev.
003, 103, 2861; c) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou,
chemical transformations were carried out to demonstrate the
potential applications of these molecules (Scheme 4). For example,
the N-acetyl group of dihydroindole 3a could be easily removed
under acidic conditions, giving the desired product 6 in 88% yield
with the enantioselectivity remaining almost unchanged.
Furthermore, 3a could be oxidized by activated MnO2 to form
indole 7 in good yield (65%).
Chem. Rev. 2010, 110, 704; d) S. Zhu, X. Cui, X. P. Zhang, Eur. J.
Inorg. Chem. 2012, 430; e) J. Egger, E. M. Carreira, Nat. Prod. Rep.
2
014, 31, 449; f) D. Qiana, J. Zhang, Chem. Soc. Rev. 2015, 44, 677.
[5]. a) H. J. Monteiro, Tetrahedron Lett. 1987, 28, 3459; b) S.-K. Zhao,
C. Knors, P. Helquist, J. Am. Chem. Soc. 1989, 111, 8527; c) S. Ishii,
S. Zhao, G. Mehta, C. G. Knors, P. Helquist, J. Org. Chem. 2001, 66,
3
449; d) P. Müller, S. Tohill, Tetrahedron 2000, 56, 1725; e) M.
Honma, M. Nakada, Tetrahedron Lett. 2003, 44, 9007; f) Y. Li, J.-S.
Huang, Z.-Y. Zhou, C.-M. Che, Chem. Commun. 2003, 1362; g) J.
Barluenga, M. F.-Mastral, F. Aznar, Chem. Eur. J. 2008, 14, 7508; h)
D. L. Ventura, Z. Li, M. G. Coleman, H. M. L. Davies, Tetrahedron
2009, 65, 3052; i) J. Hansen, B. Li, E. Dikarev, J. Autschbach, H. M.
L. Davies, J. Org. Chem. 2009, 74, 6564; j) C. J. Lovely, J. A. Flores,
X. Meng, H. V. R. Dias, Synlett. 2009, 129.
Scheme 4. Chemical transformations of 3a
[
6]. For selective C-H insertion: a) H. M. L. Davies, E. G. Antoulinakis,
T. Hansen, Org. Lett. 1999, 1, 383; b) Y. Li, J.-S. Huang, Z.-Y. Zhou,
C.-M. Che, J. Am. Chem. Soc. 2001, 123, 4843; c) H. M. L. Davies,
P. Ren, Q. Jin, Org. Lett. 2001, 3, 3587; d) H. M. L. Davies, R. E. J.
Beckwith, E. G. Antoulinakis, Q. Jin, J. Org. Chem. 2003, 68, 6126;
e) H. M. L. Davies, Q. Jin, J. Am. Chem. Soc. 2004, 126, 10862; f) J.
R. Denton, H. M. L. Davies, Org. Lett. 2009, 11, 787; g) L. Fu, D. M.
Guptill, H. M. L. Davies, J. Am. Chem. Soc. 2016, 138, 5761; h) D.
Solé, F. Mariani, M.-L. Bennasar, I. Fernández, Angew. Chem. Int.
Ed. 2016, 55, 6467; Angew. Chem. 2016, 128, 6577; i) J. R. Griffin,
C. I. Wendell, J. A. Garwin, M. C. White, J. Am. Chem. Soc. 2017,
In summary, we have developed a catalyst-controlled highly
chemo-, enantio-, and diaseteroselective intramolecular allylic C-H
insertion and cyclopropanation of donor/donor-carbenes by a
nondiazo approach. All the reactions were conducted in a one-pot
manner without slow addition of the carbene precursors. The
Ru(II)/Pybox complex selectively catalyzed the intramolecular
allylic C−H insertion, providing vinyl-substituted dihydroindoles
with > 20:1 chemoselectivity and up to > 99% ee. Chiral
dirhodium(II) tetracarboxylates, however, selectively promoted the
intramolecular cyclopropanation, giving rise to cyclopropane-fused
tetrahydroquinoline derivatives in excellent yields with > 99:1
chemoselectivity and up to 97% ee. In addition, this Ru(II)/L6
catalytic system was also applied to the challenging alkyl C-H
insertion of N-alkyl substituted enynones and afforded the desired
products with excellent diastereoselectivity and enantioselectivity.
We believe that this unique catalyst-controlled carbene transfer
reaction should not only help understanding the behaviors of
different types of metal carbenes but also provide appealing
methodologies for organic synthesis.
1
39, 13624. For selective cyclopropanation: j) M. P. Doyle, M. Y.
Eismont, M. N. Protopopova, M. M. Y. Kwan, Tetrahedron 1994, 50,
519; k) M. P. Doyle, R. E. Austin, A. S. Bailey, M. P. Dwyer, A. B.
4
Dyatkin, A. V. Kalinin, M. M. Y. Kwan, S. Liras, C. J. Oalmann, R.
J. Pieters, M. N. Protopopova, C. E. Raab, G. H. P. Roos, Q.-L. Zhou,
S. F. Martin, J. Am. Chem. Soc. 1995, 117, 5763; l) M. P. Doyle, C.
S. Peterson, Q.-L. Zhou, H. Nishiyama, Chem. Commun. 1997, 211;
m) M. P. Doyle, W. Hu, B. Chapman, A. B. Marnett, C. S. Peterson,
J. P. Vitale, S. A. Stanley, J. Am. Chem. Soc. 2000, 122, 5718; n) M.
Barberis, J. P.-Prieto, S.-E. Stiriba, P. Lahuerta, Org. Lett. 2001, 3,
3317; o) M. Barberis, J. P.-Prieto, Organometallics 2002, 21, 1667; p)
A. Prieto, M. R. Fructos, M. M.-Requejo, P. J. Pérez, P. P.-Galán, N.
Delpont, A. M. Echavarren, Tetrahedron 2009, 65, 1790; q) J.-L.
Zhu, Y.-P. Wu, Synlett 2017, 28, 1467.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
[
7]. a) D. Bykowski, K.-H. Wu, M. P. Doyle, J. Am. Chem. Soc. 2006,
128, 16038; b) J. L. Thompson, H. M. L. Davies, J. Am. Chem. Soc.
Keywords: asymmetric catalysis • carbenes • C-H insertion •
cyclopropanation • heterocycles
2007, 129, 6090; c) H. M. L. Davies, M. G. Coleman, D. L. Ventura,
Org. Lett. 2007, 9, 4971.
[
8]. a) E. J.-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; b) J.
Xiao, X. Li, Angew. Chem. Int. Ed. 2011, 50, 7226; Angew. Chem.
2011, 123, 7364; c) L. Zhang, Acc. Chem. Res. 2014, 47, 877; d) J.
Ma, L. Zhang, S. Zhu, Curr. Org. Chem. 2016, 20, 102; e) M. Jia, S.
Ma, Angew. Chem. Int. Ed. 2016, 55, 9134; Angew. Chem. 2016, 128,
9280; f) L. Chen, K. Chen, S. Zhu, Chem. 2018, 4, 1208.
[
1]. a) I. S. Carrico, Chem. Soc. Rev. 2008, 37, 1423; b) C.-H. Zhou, J. N.
Beltramini, Y.-X. Fana, G. Q. Lu, Chem. Soc. Rev. 2008, 37, 527; c)
R. A. Shenvi, D. P. O’Malley, P. S. Baran, Acc. Chem. Res. 2009, 42,
5
2
30; d) N. A. Afagh, A. K. Yudin, Angew. Chem. Int. Ed. 2010, 49,
62; Angew. Chem. 2010, 122, 270.
[
2]. a) M. P. Doyle, D. G. Ene, D. C. Forbes, T. H. Pillow, Chem.
Commun. 1999, 1691; b) S. Lee, W.-M. Lee, G. A. Sulikowski, J.
Org. Chem. 1999, 64, 4224; c) M. R. Fructos, T. R. Belderrain, M. C.
Nicasio, S. P. Nolan, H. Kaur, M. M. D.-Requejo, P. J. Pérez, J. Am.
Chem. Soc. 2004, 126, 10846; d) K. Ramakrishna, C. Sivasankar, J.
Org. Chem. 2016, 81, 6609.
[9]. Selected examples: a) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am.
Chem. Soc. 2004, 126, 8654; b) J. Barluenga, L. Riesgo, R. Vicente, L. A.
López, M. Tomás, J. Am. Chem. Soc. 2007, 129, 7772; c) J. Barluenga, L.
Riesgo, R. Vicente, L. A. López, M. Tomás, J. Am. Chem. Soc. 2008, 130,
13528; d) C. H. Oh, J. H. Lee, S. J. Lee, J. I. Kim, C. S. Hong, Angew.
Chem. Int. Ed. 2008, 47, 7505; Angew. Chem. 2008, 120, 7615; e) R.
Vicente, J. González, L. Riesgo, J. González, L. A. López, Angew. Chem.
Int. Ed. 2012, 51, 8063; Angew. Chem. 2012, 124, 8187; f) Y. Xia, S. L.
Qu, Q. Xiao, Z. X. Wang, P. Y. Qu, L. Chen, Z. Liu, L. M. Tian, Z. X.
Huang, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2013, 135, 13502; g) J.
González, J. González, C. Pérez-Calleja, L. A. López, R. Vicente, Angew.
Chem. Int. Ed. 2013, 52, 5853; Angew. Chem. 2013, 125, 5965; h) J. Ma,
H. Jiang, S. Zhu, Org. Lett., 2014, 16, 4472; i) C. Soldi, K. N. Lamb, R. A.
Squitieri, M. G-Lꢀpez, M. J. D. Maso, J. T. Shaw, J. Am. Chem. Soc. 2014,
136, 15142; j) J. Ma, K. Chen, H. Fu, L. Zhang, W. Wu, H. Jiang, S. Zhu,
[
3]. Selected reviews: a) M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98,
911; b) D. M. Hodgson, F. Y. T. M. Pierard, P. A. Stupple, Chem.
Soc. Rev. 2001, 30, 50; c) M. M. D.-Requejo, P. J. Pérez, J.
Organomet. Chem. 2005, 690, 5441; d) Z. Li, C. He, Eur. J. Org.
Chem. 2006, 4313; e) H. M. L. Davies, J. R. Manning, Nature 2008,
451, 417; f) A. Padwa, Chem. Soc. Rev. 2009, 38, 3072; g) H. Lu, X.
P. Zhang, Chem. Soc. Rev. 2011, 40, 1899; h) S.-F. Zhu, Q.-L. Zhou,
Acc. Chem. Res. 2012, 45, 1365; i) X. Guo, W. Hu, Acc. Chem. Res.
2013, 46, 2427; j) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R.
4
This article is protected by copyright. All rights reserved.