R. Torchio et al. / Journal of Magnetism and Magnetic Materials 322 (2010) 3565–3571
3571
Table 2
NP size distribution parameters as obtained from 300 K hysteresis loops analysis.
Acknowledgments
We are grateful to Dr. In~aki Orue from the Servicios Generales
Sample
sM (nm)
Keff (106 erg/cm3)
DM (nm)
´
de Investigacion of the University of Basque Country, for the
accurate technical support during magnetic measurements.
(0)
(1)
(2)
(3)
(4)
7.23(6)
8.13(7)
10.5(3)
6.23(5)
7.1(2)
5.2(1)
6.2(2)
9.8(7)
4.3(1)
4.5(2)
4.4
6.3
5.7
8.2
8.6
References
[1] J. Bansmann, S.H. Baker, C. Binns, J.A. Blackman, J.P. Bucher, J. Dorantes-Da´vila,
V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K.H. Meiwes-Broer, G.M. Pastor,
A. Perez, O. Toulemonde, K.N. Trohidou, J. Tuaillon, Y. Xie, Surf. Sci. Rep. 56
(2005) 189–275.
[2] P. Canton, P.F. Fazzini, C. Meneghini, A. Benedetti, G. Pozzi, Nanoscale
characterization of metal nanoclusters by means of XRay diffraction (XRD)
and transmission electron microscopy (TEM) techniques, in: B. Corain,
G. Schmid, N. Toshima (Eds.), Metal Nanoclusters in Catalysis and Materials
Science, vol. 1, Elsevier, Amsterdam, 2007.
appear quite close together, 5–7 nm being the interparticle
distances determined from TEM and HR-TEM analysis. The
broadening of magnetic size distribution is smaller for DEHP
samples than for AOT samples, consistently with TEM data,
suggesting that DEHP is more efficient in selecting the particle size.
The anisotropy constants of NPs were calculated from TB
accordingly to [26] as Keff ¼ 25kBTB=V (kB being the Boltzmann
constant, V the particle volume obtained from TEM measure-
ments) and reported in Table 2. Due to the surface effects, the
values we found are definitively higher than Keff of bulk fcc Co
(2:7 ꢂ 106 erg=cm3). However, these values are also higher than
published values for Co nanoparticles having similar sizes
[18,27,28], which strengthens the conclusion that the fcc Co
nanoparticles are surrounded by a Co-oxide shell.
[3] S.H. Baker, S.C. Thornton, K.W. Edmonds, M.J. Maher, C. Norris, C. Binns, Rev.
Sci. Instrum. 71 (2000) 3178.
[4] R.P. Methling, V. Senz, E.D. Klinkenberg, Th. Diederich, J. Tiggesa¨umker,
G. Holzhu¨ter, J. Bansmann, K.H. Meiwes-Broer, Eur. Phys. J. D 16 (2001) 173.
[5] G. Gantefo¨r, K.H. Meiwes-Broer, H.O. Lutz, Phys. Rev. A 37 (1988) 2716.
[6] K.H. Meiwes-Broer, Metal Clusters at Surfaces, Springer-Verlag, Berlin, 2000.
[7] C. Chiang, J. Colloid Interface Sci. 239 (2001) 334.
[8] P. Calandra, V. Turco Liveri, A. Longo, Colloid Polym. Sci. 279 (2001) 1112.
[9] X.M. Lin, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Langmuir 14 (1998)
7140.
[10] J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Phys. Rev. B 51
(1995) 11527.
[11] A. Longo, F. Giordano, F. Giannici, A. Martorana, G. Portale, A. Ruggirello,
V. Turco Liveri, J. Appl. Phys. 105 (2009) 114308.
4. Conclusions
[12] S. Pascarelli, F. Boscherini, F. D’Acapito, J. Hrdy, C. Meneghini, S. Mobilio,
J. Synchrotron Radiat. 3 (1996) 147.
[13] X. Chen, S. Bedanta, O. Petraic, W. Kleeman, S. Sahoo, S. Cardoso, P.P. Freitas,
Phys. Rev. B 72 (2005) 214436.
[14] A. Garcia Prieto, M.L. Fdez-Gubieda, C. Meneghini, A. Garcia-Arribas,
S. Mobilio, Phys. Rev. B 67 (2003) 224415.
Nanostructured colloidal systems made of Co NPs embedded
into surfactant matrices were accurately characterized using
advanced complementary techniques: (HR-)TEM, Co K edge XAS
and magnetic probes.
TEM images reveal nanocluster sizes having the size in the
3–4.5 nm range as a function of surfactant and drying procedures.
Co K edge XAS data demonstrate the presence of Co in three main
phases: Co-fcc, Co3O4 plus a fraction of Co2+ which remains
bound to the surfactant. The effect of surfactant on the particle
morphology and magnetic response is slightly different: DEHP
determine smaller particles and sharper size distribution, but AOT
surfactant appear more efficient against oxidation.
The analysis of HR-TEM images demonstrates that NPs mainly
have Co-fcc structure. Therefore, combining (HR)TEM and XAS
results it is possible to conclude that NPs have a core shell
structure formed by a Co-fcc core surrounded by a thin Co-oxide
shell about 0.5 nm thick. The core–shell model explains the high
magnetic anisotropy constant of these NPs and the raising of TB
with respect to pure Co NPs. Our results suggest that differences
in the core–shell structure of the particles play a significant role in
determining the ample differences in the TB reported in literature
for Co NPs having similar size and shape.
[15] F. Bardelli, C. Meneghini, S. Mobilio, Sugata Ray, D.D. Sarma, J. Phys.: Condens.
Matter 21 (2009) 195502.
[16] O. Kitakami, H. Sato, Y. Shimadaet, F. Sato, M. Tanaka, Phys. Rev. B 56 (1997)
21.
[17] I.W. Park, M. Yoon, Y.M. Kim, Y. Kim, H. Yoon, H.J. Song, V. Volkov, A. Avilov,
Y.J. Park, Solid State Commun. 126 (2003) 385.
[18] E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, D. Gatteschi, C. Sangregorio,
M. Falconieri, G. Salvetti, G. Battaglin, Appl. Phys. Lett. 73 (1998) 1176.
[19] M. Knobel, L.M. Socolovsky, J.M. Vargas, Rev. Mex. Fis. 50 (2004) 8–28.
[20] Y. Ichiyanagi, Y. Kimishima, S. Yamada, J. Magn. Magn. Mater. 272–276
(2004) e1245–e1246.
[21] Y. Ichiyanagi, S. Yamada, Polyhedron 24 (2005) 2813–2816.
[22] P. Dutta, M.S. Seehra, S. Thota, J. Kumar, J. Phys.: Condens. Matter 20 (2008)
015218.
[23] S.A. Makhlouf, J. Magn. Magn. Mater. 246 (2002) 184–190.
[24] Y. Hayakawa, S. Kohiki, M. Sato, Y. Sonda, T. Babasaki, H. Deguchi, A. Hidaka,
H. Shimooka, S. Takahashi, Physica E 9 (2001) 250–252.
[25] P. Allia, M. Coisson, M. Knobel, P. Tiberto, F. Vinai, Phys. Rev. B 60 (1999)
12207.
[26] B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, 1972.
[27] A. Garcı´a Prieto, M.L. Fdez-Gubieda, Physica B 354 (2004) 92.
~
[28] B.R. Pujada, E.H.C.P. Sinnecker, A.M. Rossi, C.A. Ramos, A.P. Guimaraes, Phys.
Rev. B 67 (2003) 024402.