ACS Catalysis
Research Article
(5) (a) Balaraman, E.; Milstein, D. Hydrogenation of polar bonds
catalysed by ruthenium-pincer complexes. Top. Organomet. Chem.
2014, 48, 19−44. (b) Chelucci, G.; Baldino, S.; Baratta, W. Acc. Chem.
Res. 2015, 48, 363−379. (c) Chelucci, G.; Baldino, S.; Baratta, W.
Coord. Chem. Rev. 2015, 300, 29−85. (d) Dub, P. A.; Ikariya, T. ACS
Catal. 2012, 2, 1718−1741.
(6) (a) Younus, H. A.; Ahmad, N.; Su, W.; Verpoort, F. Coord. Chem.
Rev. 2014, 276, 112−152. (b) Younus, H. A.; Su, W.; Ahmad, N.;
Chen, S.; Verpoort, F. Adv. Synth. Catal. 2015, 357, 283−330.
(c) John, J. M.; Bergens, S. H. Angew. Chem., Int. Ed. 2011, 50, 10377−
10380. (d) John, J. M.; Loorthuraja, R.; Antoniuk, E.; Bergens, S. H.
Catal. Sci. Technol. 2015, 5, 1181−1186. (e) Friedrich, A.; Schneider,
S. ChemCatChem 2009, 1, 72−73. (f) Schneider, S.; Meiners, J.;
Askevold, B. Eur. J. Inorg. Chem. 2012, 2012, 412−429. (g) Musa, S.;
Ackermann, L.; Gelman, D. Adv. Synth. Catal. 2013, 355, 3077−3080.
(h) Musa, S.; Fronton, S.; Vaccaro, L.; Gelman, D. Organometallics
2013, 32, 3069−3073.
(7) (a) Li, H.; Wang, X.; Huang, F.; Lu, G.; Jiang, J.; Wang, Z.-X.
Organometallics 2011, 30, 5233−5247. (b) Hasanayn, F.; Baroudi, A.
Organometallics 2013, 32, 2493−2496. (c) Montag, M.; Zhang, J.;
Milstein, D. J. Am. Chem. Soc. 2012, 134, 10325−10328. (d) Chen, X.;
Jing, Y.; Yang, X. Chem. - Eur. J. 2016, 22, 1950−1957. (e) Jiao, H.;
Junge, K.; Alberico, E.; Beller, M. J. Comput. Chem. 2016, 37, 168−176.
(f) Qu, S.; Dang, Y.; Song, C.; Wen, M.; Huang, K.-W.; Wang, Z.-X. J.
Am. Chem. Soc. 2014, 136, 4974−4991.
complexes 1−5 studied here can act as both inner- and outer-
sphere catalysts, and the two mechanisms are most likely in
competition in the hydrogenation/dehydrogenation reactions.
Additionally, solvation can play a crucial role by triggering some
of the elementary steps occurring in solution.7 It is the extreme
power of mass spectrometry in detecting gaseous species
present in vanishingly low concentrations that, ironically, makes
it challenging to claim with enough certainty that the
intermediates documented in this work represent the principal
reaction pathway and thus “the mechanism” of the ADC
reactions of ethanol.
The inner-sphere ADC mechanism is distinctly different
from the outer-sphere process by involving a coordinated
aldehyde intermediate, formed via the classical β-hydrogen
elimination. The latter requires an empty coordination site and
a certain degree of lability/hemilability of the catalyst. In this
regard, a comparative study of the catalysts of varying degrees
of hemilability, also including stable complexes with all strongly
bonded ligands, should provide important mechanistic insights.
A fitting example from our own work is the comparison of
RuHCl(CO)[HN(CH2CH2PPh2)2] and RuHCl(CO)-
[PyCH2NHCH2CH2PPh2]. These complexes gave 4700 and
4200 turnovers, respectively, in the ADC of refluxing ethanol to
ethyl acetate in 24 h under equivalent reaction conditions.11b If
the former catalyst retains an intact Ru[κ3-PNP] fragment at 78
°C, this would be an indication of the outer-sphere mechanism
being the principal pathway. There is no doubt that future
studies would furnish a definitive answer.
(8) (a) Coelho, F.; Eberlin, M. N. Angew. Chem., Int. Ed. 2011, 50,
5261. (b) Santos, L. S. Eur. J. Org. Chem. 2008, 2008, 235−253.
(c) Chen, P. Angew. Chem., Int. Ed. 2003, 42, 2832−2847. (d) Eberlin,
M. N. Eur. Mass Spectrom. 2007, 13, 19. (e) Schroder, D. Acc. Chem.
̈
Res. 2012, 45, 1521−1532. (f) Iacobucci, C.; Reale, S.; De Angelis, F.
Angew. Chem., Int. Ed. 2016, 55, 2980−2993.
(9) (a) Bohme, D. K.; Schwarz, H. Angew. Chem., Int. Ed. 2005, 44,
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
̈
■
2336−2354. (b) O’Hair, R. A. J. Chem. Commun. 2006, 1469−1481.
(c) Vikse, K. L.; McIndoe, J. S. Pure Appl. Chem. 2015, 87, 361−377.
(10) (a) Vikse, K. L.; Woods, M. P.; McIndoe, J. S. Organometallics
2010, 29, 6615−6618. (b) Vikse, K. L.; Ahmadi, Z.; Luo, J.; Van Der
Wal, N.; Daze, K.; Taylor, N.; McIndoe, J. S. Int. J. Mass Spectrom.
2012, 323−324, 8−13. (c) Yunker, L. P. E.; Stoddard, R. L.; McIndoe,
J. S. J. Mass Spectrom. 2014, 49, 1−8. (d) Wang, H.-Y.; Yim, W.-L.;
S
Schematic picture of the PSI ESI-MS experimental setup,
additional ESI-MS data, and peak assignments for various
Kluner, T.; Metzger, J. O. Chem. - Eur. J. 2009, 15, 10948−10959.
̈
(11) (a) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed.
2012, 51, 2772−2775. (b) Spasyuk, D.; Gusev, D. G. Organometallics
2012, 31, 5239−5242.
AUTHOR INFORMATION
Corresponding Authors
■
(12) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed.
2013, 52, 2538−2542.
(13) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.;
Gusev, D. G. Organometallics 2011, 30, 3479−3482.
(14) Spasyuk, D.; Vicent, C.; Gusev, D. G. J. Am. Chem. Soc. 2015,
137, 3743−3746.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(15) Zheng, Q.; Liu, Y.; Chen, Q.; Hu, M.; Helmy, R.; Sherer, E. C.;
Welch, C. J.; Chen, H. J. Am. Chem. Soc. 2015, 137, 14035−14038.
We are grateful to the NSERC Canada, the Ontario
Government, and Wilfrid Laurier University for financial
support and the SCIC of the UJI for providing mass
spectrometry facilities.
(16) (a) Sorribes, I.; Wienhofer, G.; Vicent, C.; Junge, K.; Llusar, R.;
̈
Beller, M. Angew. Chem., Int. Ed. 2012, 51, 7794−7798. (b) Adrio, L.
A.; Gimeno, J.; Vicent, C. Chem. Commun. 2013, 49, 8320−8322.
(17) Wang, H.-Y.; Yim, W.-L.; Guo, Y.-L.; Metzger, J. O.
Organometallics 2012, 31, 1627−1634.
REFERENCES
■
(18) While the peak at m/z 685.2 may certainly come from
intermediate 1d via hydride loss, namely [1d − H]+, this species is not
diagnostic because 1b,c intermediates should also produce this species
via X release (X = ethoxo, 1-ethoxyethanolate, respectively). In
addition, we cannot definitely rule out that the intermediates 1d−4d
are not seen due to their inefficient Na+ adduct formation.
(19) Wassenaar, J.; Jansen, E.; Van Zeist, W. J.; Bickelhaupt, F. M.;
Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Nat. Chem. 2010, 2, 417−
421.
(1) (a) Gunanathan, C.; Milstein, D. Science 2013, 341 (6143),
1229712. (b) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res.
Dev. 2014, 18, 289−302. (c) Pritchard, J.; Filonenko, G. A.; van
Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44,
3808−3833.
(2) (a) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588−
602. (b) Gunanathan, C.; Milstein, D. Chem. Rev. 2014, 114, 12024−
12087.
(3) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc.
(20) Murahashi, S.-I.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. J. Org.
Chem. 1987, 52, 4319−4327.
(21) Menashe, N.; Shvo, Y. Organometallics 1991, 10, 3885−3891.
2005, 127, 10840−10841.
(4) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317
(5839), 790−792.
3308
ACS Catal. 2016, 6, 3301−3309