3
Chem. 2017, 82, 3917. See the Supporting Information for a
complete list of references.
6. This step is promoted by the N,N-chelation of the
aminoquinoline moiety to the copper center. The copper(III)
intermediate 718 is then formed by disproportionation with
4
5
6
For recent selected examples of decarboxylative coupling with
sulfonates, see: a) D. Hackenberger, B. Song, M. F. Grünberg, S.
Farsadpour, F. Menges, H. Kelm, C. Groß, T. Wolff, G. Niedner-
Schatteburg, W. R. Thiel, L. J. Gooßen, ChemCatChem 2015, 7,
3579; b) L. W. Sardzinski, W. C. Wertjes, A. M. Schnaith, D.
Kalyani, Org. Lett. 2015, 17, 1256; c) Y. Zhu, X. Wen, S. Song, N.
Jiao, ACS Catal. 2016, 6, 6465; d) L. Fan, J. Jia, H. Hou, Q.
Lefebvre, M. Rueping, Chem. Eur. J. 2016, 22, 16437; e) S. Yu, E.
Cho, J. Kim, S. Lee, J. Org. Chem. 2017, 82, 11150.
a) J. T. Edwards, R. R. Merchant, K. S. McClymont, K. W. Knouse,
T. Qin, L. R. Malins, B. Vokits, S. A. Shaw, D.-H. Bao, F.-L. Wei,
T. Zhou, M. D. Eastgate, P. S. Baran, Nature 2017, 545, 213; b) F.
Sandfort, M. J. O’Neill, J. Cornella, L. Wimmer, P. S. Baran,
Angew. Chem. Int. Ed. 2017, 56, 3319; c) J. M. Smith, T. Qin, R. R.
Merchant, J. T. Edwards, L. R. Malins, Z. Liu, G. Che, Z. Shen, S.
A. Shaw, M. D. Eastgate, P. S. Baran, Angew. Chem. Int. Ed. 2017,
56, 11906; d) X. Tan, Z. Liu, H. Shen, P. Zhang, Z. Zhang, C. Li, J.
Am. Chem. Soc. 2017, 139, 12430.
a) J. Cornella, P. Lu, I. Larrosa, Org. Lett. 2009, 11, 5506; b) F.
Zhang, M. F. Greaney, Angew. Chem. Int. Ed. 2010, 49, 2768; c) K.
Xie, Z. Yang, X. Zhou, X. Li, S. Wang, Z. Tan, X. An, C.-C. Guo,
Org. Lett. 2010, 12, 1564; d) J. Zhou, P. Hu, M. Zhang, S. Huang,
M. Wang, W. Su, Chem. Eur. J. 2010, 16, 5876; e) H. Zhao, Y.
Wei, J. Xu, J. Kan, W. Su, M. Hong, J. Org. Chem. 2011, 76, 882;
f) P. Hu, M. Zhang, X. Jie, W. Su, Angew. Chem. Int. Ed. 2012, 51,
227; g) T. Patra, S. Nandi, S. K. Sahoo, D. Maiti, Chem. Commun.
2015, 52, 1432; h) W.-M. Cheng, R. Shang, Y. Fu, ACS Catal.
2017, 7, 907; i) W.-M. Cheng, R. Shang, M.-C. Fu, Y. Fu, Chem.
Eur. J. 2017, 23, 2537; j) R. A. Garza-Sanchez, A. Tlahuext-Aca,
G. Tavakoli, F. Glorius, ACS Catal. 2017, 7, 4057; k) J.-B. E. Y.
Rouchet, M. Hachem, C. Schneider, C. Hoarau, ACS Catal. 2017, 7,
5363; l) Y. Li, F. Qian, M. Wang, H. Lu, G. Li, Org. Lett. 2017, 19,
5589.
a) W.-Y. Yu, W. N. Sit, Z. Zhou, A. S.-C. Chan, Org. Lett. 2009,
11, 3174; b) S. Zhao, Y.-J. Liu, S.-Y. Yan, F.-J. Chen, Z.-Z. Zhang,
B.-F. Shi, Org. Lett. 2015, 17, 3338; c) A. P. Honeycutt, J. M.
Hoover, ACS Catal. 2017, 7, 4597.
a) C. Premi, A. Dixt, N. Jain, Org. Lett. 2015, 17, 2598. For a
directed intramolecular C-N coupling, see: b) Z.-J. Liu, G. Wang, L.
Li, W.-T. Jiang, Y.-D. Wang, B. Xiao, Y. Fu, J. Am. Chem. Soc.
2016, 138, 9714.
Selected examples: a) M. Li, H. Ge, Org. Lett. 2010, 12, 3464; b) P.
Fang, M. Li, H. Ge, J. Am. Chem. Soc. 2010, 132, 11898; c) Y. Wu,
L. Sun, Y. Chen, Q. Zhou, J.-W. Huang, H. Miao, H.-B. Luo, J.
Org. Chem. 2016, 81, 1244; d) X. Chen, X. Cui, Y. Wu, Org. Lett.
2016, 18, 3722; e) P.-Y. Lee, P. Liang, W.-Y. Yu, Org. Lett. 2017,
19, 2082; f) K. Jing, J.-P. Yao, Z.-Y. Li, Q.-L. Li, H.-S. Lin, G.-W.
Wang, J. Org. Chem. 2017, 82, 12715. See the Supporting
Information for a complete list of references.
a) M. Kitahara, N. Umeda, K. Hirano, T. Satoh, M. Miura, J. Am.
Chem. Soc. 2011, 133, 2160; b) M. Nishino, K. Hirano, T. Satoh,
M. Miura, Angew. Chem. Int. Ed. 2012, 51, 6993; c) M. Nishino, K.
Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2013, 52, 4457;
d) R. Odani, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed.
2014, 53, 10784; e) K. Takamatsu, K. Hirano, M. Miura, Angew.
Chem. Int. Ed. 2017, 56, 5353. See the Supporting Information for
a complete list of references.
another copper(II) species.
The decarboxylation then
proceeds to form copper(III) alkyl species 8, and the
corresponding product 3ab is finally produced by reductive
elimination. Although the origin of unique positive effects of
ortho-methyl group observed in Scheme 3 is unclear at
present, it might accelerate otherwise challenging reductive
elimination from 8.19, 20
Finally, we performed the derivatization of alkylation
products (Scheme 5). The directing group of 3qb could be
easily removed with cerium ammonium nitrate (CAN) in
MeCN/H2O at room temperature to produce the primary
amide 9 in 57% yield.21 In addition, tert-butyl ester 3ad was
readily cyclized with trifluoroacetic acid in CH2Cl2 to form
the cyclic imide 10 in a good yield. Moreover, isoquinolone
11 was synthesized from alkylation product 3ab with
morpholine and diisobutylaluminum hydride (DIBAL-H) in
THF.22 In contrast, the reaction of 3ab with only DIBAL-H
afforded the simply reduced alcohol 12 in 83% yield.
In conclusion, we have developed an 8-aminoquinoline-
directed, copper-mediated decarboxylative C-H alkylation of
benzamides with potassium malonate monoesters. This
reaction proceeds smoothly by using a copper salt alone to
produce the alkylation products with the ester functionality,
which can be a useful and versatile synthetic handle for
further transformations.
mechanism and development of related C-H activation
reactions with copper catalysts are ongoing in our laboratory.
Elucidation of the detailed
7
8
9
This work was supported by JSPS KAKENHI Grant Nos.
JP 17J00349 (Grant-in-Aid for JSPS Research Fellow) to K.T.,
JP 15H05485 (Grant-in-Aid for Young Scientists (A)) to K.H.,
and JP 17H06092 (Grant-in-Aid for Specially Promoted
Research) to M.M.
Supporting
Information
is
available
on
References and Notes
1
Recent selected reviews on C-H functionalization: a) X. Chen, K.
M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48,
5094; b) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem.
Int. Ed. 2009, 48, 9792; c) A. S. Dudnik, V. Gevorgyan, Angew.
Chem. Int. Ed. 2010, 49, 2096; d) T. Satoh, M. Miura, Chem. Eur.
J. 2010, 16, 11212; e) J. Yamaguchi, A. D. Yamaguchi, K. Itami,
Angew. Chem. Int. Ed. 2012, 51, 8960; f) M. P. Drapeau, L. J.
Gooßen, Chem. Eur. J. 2016, 22, 18654. See the Supporting
Information for a complete list of references.
10
11
12
Selected examples: a) X. Chen, X.-S. Hao, C. E. Goodhue, J.-Q.
Yu, J. Am. Chem. Soc. 2006, 128, 6790; b) T. Uemura, S. Imoto, N.
Chatani, Chem. Lett. 2006, 35, 842; c) Q. Li, S.-Y. Zhang, G. He, Z.
Ai, W. A. Nack, G. Chen, Org. Lett. 2014, 16, 1764; d) M. Shang,
S.-Z. Sun, H.-X. Dai, J.-Q. Yu, Org. Lett. 2014, 16, 5666; e) J.
Roane, O. Daugulis, J. Am. Chem. Soc. 2016, 138, 4601. See the
Supporting Information for a complete list of references.
For pioneering work by Daugulis, see: a) V. G. Zaitsev, D.
Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 13154.
Recent reviews: b) M. Corbet, F. De Campo, Angew. Chem. Int. Ed.
2013, 52, 9896; c) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed.
2013, 52, 11726; d) L. C. M. Castro, N. Chatani, Chem. Lett. 2015,
44, 410; e) J. Liu, G. Chen, Z. Tan, Adv. Synth. Catal. 2016, 358,
1174.
2
Pioneering work: a) M. Nilsson, Acta Chem. Scand. 1966, 20, 423;
b) L. J. Gooßen, G. Deng, L. M. Levy, Science 2006, 313, 662.
Selected reviews: c) J. D. Weaver, A. Recio III, A. J. Grenning, J.
A. Tunge, Chem. Rev. 2011, 111, 1846; d) N. Rodríguez, L. J.
Gooßen, Chem. Soc. Rev. 2011, 40, 5030; e) W. I. Dzik, P. P.
Lange, L. J. Gooßen, Chem. Sci. 2012, 3, 2671; f) J. Cornella, I.
Larrosa, Synthesis 2012, 44, 653; g) K. Park, S. Lee, RSC Adv.
2013, 3, 14165; h) H. Huang, K. Jia, Y. Chen, ACS Catal. 2016, 6,
4983; i) T. Patra, D. Maiti, Chem. Eur. J. 2017, 23, 7382; j) Y. Wei,
P. Hu, M, Zhang, W. Su, Chem. Rev. 2017, 117, 8864.
For recent selected examples of decarboxylative coupling with
organic halides, see: a) J. Tang, A. Biafora, L. J. Gooßen, Angew.
Chem. Int. Ed. 2015, 54, 13130; b) C. P. Johnston, R. T. Smith, S.
Allmendinger, D. W. C. MacMillan, Nature 2016, 536, 322; c) D.
Hackenberger, P. Weber, D. C. Blakemore, L. J. Gooßen, J. Org.
3