COMMUNICATIONS
(Æ)-1-phenylethylamine with a selectivity factor of 12 (Ta-
ble 2, entry 1).[11] Other primary amines can also be kinetically
resolved with good stereocontrol by PPY*. Higher selectivity
factors are obtained for amines in which the aromatic group
bears an ortho substituent (entries 2 and 3 vs. entry 1).
O
O
R
O
OMe
PPY*
HN
OMe
R'
slow
fast
O
Ar
step 2
step 1
N
Ar'
NH2
R
O
O
O
R'
Ar
Table 2. Kinetic resolutions catalyzed by (ꢁ)-PPY*.
PPY*
OMe
N
O
Ar'
Scheme 1. Proposed mechanism for acylations catalyzed by PPY*.
O
OMe
O
R
NH2
R
10% (–)-PPY*
t Bu
HN
OMe
O
Ar
CHCl3
–50 °C
N
with this kinetic scheme is our observation that the rate of the
reaction is zero order in acylating agent and first order in
PPY* and in amine.[13]
Ar
racemic
β-Naphthyl
Entry
1
Amine
s
Received: September 28, 2000 [Z15872]
12
[1] a) E. Vedejs, O. Daugulis, S. T. Diver, J. Org. Chem. 1996, 61, 430 ±
431; E. Vedejs, O. Daugulis, J. Am. Chem. Soc. 1999, 121, 5813 ± 5814;
b) T. Oriyama, Y. Hori, K. Imai, R. Sasaki, Tetrahedron Lett. 1996, 37,
8543 ± 8546; T. Sano, K. Imai, K. Ohashi, T. Oriyama, Chem. Lett.
1999, 265 ± 266; c) T. Kawabata, M. Nagato, K. Takasu, K. Fuji, J. Am.
Chem. Soc. 1997, 119, 3169 ± 3170; d) S. J. Miller, G. T. Copeland, N.
Papaioannou, T. E. Horstmann, E. M. Ruel, J. Am. Chem. Soc. 1998,
110, 1629 ± 1630; E. R. Jarvo, G. T. Copeland, N. Papaioannou, P. J.
Bonitatebus, Jr., S. J. Miller, J. Am. Chem. Soc. 1999, 121, 11638 ±
11643; e) F. Iwasaki, T. Maki, W. Nakashima, O. Onomura, Y.
Matsumura, Org. Lett. 1999, 1, 969 ± 972; F. Iwasaki, T. Maki, O.
Onomura, W. Nakashima, Y. Matsumura, J. Org. Chem. 2000, 65,
996 ± 1002; f) A. C. Spivey, T. Fekner, S. E. Spey, J. Org. Chem. 2000,
65, 3154 ± 3159.
2
3
27
16
4
11
[2] a) J. C. Ruble, H. A. Latham, G. C. Fu, J. Am. Chem. Soc. 1997, 119,
1492 ± 1493; b) J. C. Ruble, J. Tweddell, G. C. Fu, J. Org. Chem. 1998,
63, 2794 ± 2795; c) C. E. Garrett, M. M.-C. Lo, G. C. Fu, J. Am. Chem.
Soc. 1998, 120, 7479 ± 7483; d) B. Tao, J. C. Ruble, D. A. Hoic, G. C.
Fu, J. Am. Chem. Soc. 1999, 121, 5091 ± 5092; e) S. Bellemin-
Laponnaz, J. Tweddell, J. C. Ruble, F. M. Breitling, G. C. Fu, Chem.
Commun. 2000, 1009 ± 1010.
5
6
13
22
[3] Selectivity factor s (rate of fast-reacting enantiomer)/(rate of slow-
reacting enantiomer). For a review of kinetic resolution, see: H. B.
Kagan, J. C. Fiaud, Top. Stereochem. 1988, 18, 249 ± 330.
[4] For a review of methods for the asymmetric synthesis of amines, see:
A. Johansson, Contemp. Org. Synth. 1995, 2, 393 ± 407.
[5] a) Y. Ie, G. C. Fu, Chem. Commun. 2000, 119 ± 120; b) A. G. Al-
Sehemi, R. S. Atkinson, J. Fawcett, D. R. Russell, Tetrahedron Lett.
2000, 41, 2239 ± 2242.
7
8
16
11
[6] A wide array of enantiopure a-arylamines display biological activity,
including Exelon, a Novartis compound approved in the US in 2000
for the treatment of Alzheimerꢁs disease. For reviews about Exelon,
see: a) M. W. Jann, Pharmacotherapy 2000, 20, 1 ± 12; b) M. D.
Gottwald, R. I. Roaznski, Expert Opin. Invest. Drugs 1999, 8, 1673 ±
1682.
[7] Enantiopure a-arylamines are widely used as reagents in asymmetric
synthesis. For example, see: E. Juaristi, J. L. Leon-Romo, A. Reyes, J.
Escalante, Tetrahedron: Asymmetry 1999, 10, 2441 ± 2495.
[8] a) For kinetic resolutions of secondary alcohols, see ref. [2]; b) J.
Liang, J. C. Ruble, G. C. Fu, J. Org. Chem. 1998, 63, 3154 ± 3155;
c) J. C. Ruble, G. C. Fu, J. Am. Chem. Soc. 1998, 120, 11532 ± 11533;
d) B. L. Hodous, J. C. Ruble, G. C. Fu, J. Am. Chem. Soc. 1999, 121,
2637 ± 2638.
Electronic effects due to para substitution do not appear to
impact significantly on stereoselection (entries 4 and 5 vs.
entry 1), although enhanced selectivity is observed for a meta-
methoxy-substituted amine (entry 6). An increase in the size
of the alkyl group also leads to a modest increase in
stereoselection (entry 7 vs. entry 1). Entry 8 provides an
example of a kinetic resolution of a more highly functional-
ized amine that has been employed in studies of peptide-
based Src SH2 inhibitors.[12]
We believe that these kinetic resolutions proceed through
the pathway outlined in Scheme 1. Catalyst PPY* reacts
rapidly with the acylating agent, producing an ion pair
(step 1), which is the resting state of the catalytic cycle. In
the subsequent, stereochemistry-determining step, the me-
thoxycarbonyl group is transferred to the amine, thus furnish-
ing the carbamate and regenerating PPY* (step 2). Consistent
[9] We obtain similar results with our other planar-chiral DMAP-derived
catalysts.
[10] We have examined the use of a number of O-acylated azlactones.
These results will be reported in a future full paper.
[11] Sample experimental: Catalyst (ꢁ)-PPY* (5.2 mg, 0.014 mmol),
1-phenylethylamine (17.0 mg, 0.140 mmol), and CHCl3 (2.5 mL) were
added to a Schlenk flask under argon. The resulting purple solution
was cooled in a ꢁ508C bath, and a solution of O-acylated azlactone
Angew. Chem. Int. Ed. 2001, 40, No. 1
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4001-0235 $ 17.50+.50/0
235