418
A. S. Mahasneh · Tin(II)chloride Mediated Addition Reaction
General procedure for the synthesis of β-nitroalcohols (CHNO2). – MS (EI, 70 eV): m/e (%) = M+ (absent) 128 (<
(2a−f)
1), 113 (5), 97 (15), 95 (26), 90 (15), 83 (14), 81 (20),
69 (74), 57 (68), 55 (79), 43 (100), 41 (82). – C8H17NO3
(175.232): calcd. C 54.85, H 9.78, N 7.83; found C 54.56,
H 9.81, N 7.83.
To a mixture of SnCl2 (1.42 g, 7.5 mmol) in Et2O (40 ml),
the aldehyde (5 mmol) was added at 0 C. To this mixture
◦
while stirring bromonitromethane (5 mmol) dissolved in 2 ml
of dry ether was added. The mixture was left stirring for 4 h
during which the reaction was monitored by TLC. The reac-
tion mixture was then diluted with ether (50 ml) and washed
successively with 1M HCl, H2O, saturated NaHCO3 solution
and brine. The organic layer was separated and dried over an-
hydrous Na2SO4. The crude product was purified by TLC to
give the following nitroalcohols:
˜
1-Nitro-4-phenyl-3-buten-2-ol (2e): IR (film): ν = 3439
(OH), 1556 (NO2), 914 cm−1. – 1H NMR (200 MHz,
CDCl3): δ = 2.70 (broad, 1 H, OH), 4.50 (d, 3J = 5 Hz, 2 H,
CHNO2), 5.05 (q, 3J = 5 Hz, 1 H, CHOH), 6.10 (dd, 3J = 5,
3J = 15 Hz, 3-H), 6.80 (d, 1 H, 3J = 15 Hz, 4-H), 7.40 (m,
5 H, ArH). – 13C{ H} NMR (200 MHz, CDCl3): δ = 70.0
1
(CHOH), 80.0 (CHNO2), 124.9, 126.7, 128.5, 128.8, 133.5,
135.5 (C6H5CH=CH). – MS (EI, 70 eV): m/e (%) = M+
193 (< 1), 175 (1.5), 146 (13), 132 (22), 103 (55), 77
(100), 51 (98). C10H11NO3 (193.24): calcd. C 62.17, H 5.74,
N 7.25; found C 62.12, H 5.76, N 7.20.
˜
1-Nitro-3-penten-2-ol (2c): IR (film): ν = 3447 (OH),
1556 (NO2), 1453, 1385, 1202, 1132 cm−1. – 1H NMR
3
(200 MHz, CDCl3): δ = 1.75 (d, J = 5 Hz, 3 H, CHMe),
3
2.60 (broad, 1 H, OH), 4.45 (d, J = 5 Hz, 2 H, CHNO2),
1-Nitro-4-phenyl-2-butanol (2f): M.p. 82 – 83 ◦C. – IR
4.80 (m, 1 H, CHOH), 5.50 and 5.90 (m, 2 H, CH=CH). –
1
13C{ H} NMR (200 MHz, CDCl3): δ = 17.5 (CHMe),
˜
(KBr): ν = 3402 (OH), 2949, 1549 (NO2), 1493, 1454, 1423,
1384, 1205 cm−1. – 1H NMR (200 MHz, CDCl3): δ = 1.80
(m, 2 H, PhCH2), 2.60 (d , 3J = 5 Hz, 1 H, OH), 2.80 (m, 2 H,
PhCH2CH2), 4.30 (m, 1 H, CHOH), 4.40 (d, 2 H, 3J = 5 Hz,
69.5 (CHOH), 80.3 (CHNO2), 128.6, 131.0 (CH=CH). –
C5H9NO3 (131.132): calcd. C 45.70, H 6.92, N 10.68; found
C 45.75, H 6.88, N 10.66.
CH2NO2). 7.25 (m, 5H, Ph). – 13C{ H} NMR (200 MHz,
1
˜
1-Nitro-2-octanol (2d): IR (film): ν = 3440 (OH), 3931,
3861, 1554 (NO2), 1480, 1430, 911 cm−1. – 1H NMR
CDCl3): δ = 31.2 (PhCH2), 35.3 (C-3), 68.0 (CHOH), 80.5
(CH2NO2), 126.3, 128.3, 128.6, 140.8 (C6H5). – MS (EI,
70 eV): m/e (%) = M+ (absent), 133 (32), 130 (46), 105 (86),
104 (70), 91 (100), 92 (70), 77 (48), 65 (37), 51 (26), 43 (48).
C10H13NO3 (195.24) calcd. C 61.15, H 6.69, N 7.17; found
C 61.17, H 6.72, N 7.20.
3
(200 MHz, CDCl3): δ = 0.85 (t, J = 5 Hz, 3 H, CHMe),
1.3 – 1.5 (m, 10 H, 5×CH2), 3.00 (broad, 1 H, OH), 4.30
3
(broad, 1 H, CHOH), 4.40 (d, 2 H, J = 5 Hz, CHNO2). –
1
13C{ H} NMR (200 MHz, CDCl3): δ = 14.2 (CHMe),
22.5, 25.2, 28.8, 31.6, 33.8 (5×CH2), 68.8 (CHOH), 80.7
[8] R. Ballini, G. Bosica, J. Org. Chem. 62, 425, 1997.
[9] E. Schmidt, G. Rutz, Ber. 61, 2142 (1928).
[10] N. Levy, A. Rout, J. Rose, J. Chem. Soc. 52, 220
(1948).
[1] B. R. Fishwick, D. K. Rowles, C. J. Stirling, J. Chem.
Soc., Perkin Trans. I, 117 (1986).
[2] E. W. Clovin, D. Seebach, J. Chem. Soc., Chem. Com-
mun. 12, 689 (1978).
[11] S. Reformatsky, Ber. 20, 1210 (1887); D. G. Daper,
M. Kukis, Chem. Rev. 59, 89, 1959; M. Rathke, Org.
React. 22, 423, 1975; J. Andres, Y. Martin, Tetrahe-
dron, 53, 3787 (1997); A. Mi, Z. Wang, J. Zhang,
Y. Jiang, Synthetic Commun. 27, 1479 (1997); J. D.
Parrish, D. R. Shelton, R. D. Little, Org. Lett. 5, 3615
(2003); Y. Wang, S. Zhu, Synthesis, 1813 (2002);
E. Negishi, Pure Appl. Chem. 53, 2333 (1981);
E. Negishi, Pure Appl. Chem. 73, 239 (2001); A. Krief,
C. Castillo, Pure Appl. Chem.74, 107 (2002); A. S.
Franklin, J. Chem. Soc., Perkin Trans. 1, 3537 (1999).
[3] R. G. Coombes, in D. Barton, W. Ollis (eds): Compre-
hensive Organic Chemistry, Vol. 2, p. 303, Pergamon,
Oxford, G. B. (1979); D. Seebach, M. Eyer, J. Am.
Chem. Soc. 107, 3601 (1980); G. Rosini, R. Ballini,
Synthesis 1014 (1983); W. Keim, Pure A. Appl. Chem.
6, 825 (1986).
[4] A. S. Mahasneh, article in press.
[5] D. Seebach, R. Henning, F. Lehr, Tetrahedron Lett, 86,
493 (1986).
[6] G. Rosini, R. Ballini, Synthesis, 543 (1983).
[7] H. Slagh U.S.P. 2632776; Chem. Abstr. 48, 1412
(1954). Y. Ohishi, Chem. Farm. Bull. 32, 426 (1984);
N. Ono, M. Fuji, A. Kaji, Synthesis, 532 (1987).
Unauthenticated
Download Date | 9/14/19 4:25 PM