Table 1. Scope of Methoda
entry
RCHO
4
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
9
3a R ) 4F-C6H4
3a
4a
4a
4b
4c
4d
4e
4f
4g
4h
4i
tracesd
89
85
75
71
75
89
81
90
89 (S)
88 (S)
93 (S)
90 (S)
90 (S)
92 (S)
84 (S)
89 (S)
83 (S)
3b R ) C6H5
3c R ) C7H15
3d R ) 2NO2-C6H4
3e R ) 4Cl-C6H4
3f R ) t-Bu
3g R ) C6F5
3h R ) Cy
3i R ) 3,5(OMe) -C H
3
Figure 1. DAT2 ligand 1 and PEG-supported analogues 2.
thiophene-based compounds allowed us to prepare in few
10
65
2
6
steps a C
(
1
-symmetric DAT2 analogue tethered to poly-
a
The reactions were carried out under a nitrogen atmosphere in dry EtOH
ethylene glycol) (MeO-PEG5000, 2, Figure 1)10 that was
for 40 h. Aldehyde/MeNO 1:40 elsewhere otherwise reported. b Isolated
yields after flash chromatography. Determined by HPLC with a chiral
2
c
effectively employed in Pd-catalyzed asymmetric allylic
alkylations. Here, the recovery of the supported ligand for
several runs without any loss of activity was demonstrated.
Prompted by these promising findings, we decided to ex-
plore the potential of 2 as the chiral ligand in copper-
catalyzed base-free Henry reactions. Poly(ethylene glycol)-
modified chiral catalysts have already found numerous
applications in asymmetric organic and metallo-organic-
based reactions.
However, a very few examples12 of effective recovery of
organometallic catalysts, through the use of PEG chemistry,
have been reported. An initial drawback to circumvent was
the poor solubility of 2 in EtOH (optimal reaction media)
that prevented homogeneous conditions from operating
column. Absolute configuration was assigned by comparison of the HPLC
retention times with known samples (see ref 8). d Aldehyde/MeNO2 1:10.
that, by increasing the MeNO
2
/4F-C
0:1, 2 was successfully solubilized, furnishing (S)-4a in
excellent conversion (>98%) and good enantiomeric excess
89%, entry 2). The adopted reagents’ ratio is the best
compromise to obtain higher chemical and optical outcomes.
In fact, if lower amounts of MeNO caused a poor solubi-
lization of the catalyst (slow reaction rates), higher quantities
6 4
H CHO (3a) ratio to
1
4
4
(
1
1
2
1
5
13
of MeNO
of aromatic (electron-rich and electron-poor) and aliphatic
linear and branched) aldehydes (3b-i) was screened. Under
2
led to a drop of stereoselection. Then, a range
(
optimal conditions (EtOH, 0 °C, 40 h) nitroalcohols 4b-i
were obtained in excellent conversions (85-98%) and high
enantiomeric excesses (83-93%). The erosion in stereoin-
duction observed (∆ee ≈ 1-7) with respect to the Henry
(Table 1, entry 1). However, we were delighted to find out
(6) Melucci, M.; Barbarella, G.; Gazzano, M.; Cavallini, M.; Biscarini,
F.; Bongini, A.; Piccinelli, F.; Monari, M.; Bandini, M.; Umani-Ronchi,
A.; Biscarini, P. Chem.sEur. J. 2006, 12, 7304.
2
condensation in the presence of 1-Cu(OAc) can be
(
7) (a) Albano, V. G.; Bandini, M.; Melucci, M.; Monari, M.; Piccinelli,
F.; Tommasi, S.; Umani-Ronchi, A. AdV. Synth. Catal. 2005, 347, 1502.
b) Albano, V. G.; Bandini, M.; Barbarella, G.; Melucci, M.; Monari, M.;
Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A. Chem.sEur. J. 2006, 12,
67. (c) Albano, V. G.; Bandini, M.; Monari, M.; Piccinelli, F.; Tommasi,
S.; Umani-Ronchi, A. Inorg. Chim. Acta 2007, 360, 1000.
8) Bandini, M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.; Ventrici,
C. Chem. Commun. 2007, 616.
9) For previous uses of chiral copper-based weak Lewis acids in
tentatively ascribed to the higher amount of nitromethane
needed with PEG-modified DAT2.
Focusing on operational simplicity, we endeavored to run
the present nitroaldol condensation (3e+MeNO ) in an open-
2
air vial with reagent-grade EtOH as the solvent. Remark-
(
6
(
(
enantioselective Henry reactions, see: (a) Evans, D. A.; Seidel, D.; Rueping,
M.; Lam, H. W.; Shaw, J. T.; Downey, C. D. J. Am. Chem. Soc. 2003,
(12) (a) Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Pitillo,
M. J. Org. Chem. 2001, 66, 3160. (b) Glos, M.; Reiser, O. Org. Lett. 2000,
2, 2045. (c) Reger, T. S.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 6929.
(d) Gissibl, A.; Finn, M. G.; Reiser, O. Org. Lett. 2005, 7, 2325. (e) Zhao,
D.; Sun, J.; Ding, K. Chem.sEur. J. 2004, 10, 5952.
(13) For the recycle of PEG-supported organometallic chiral catalysts
in water, see: (a) Benaglia, M.; Danelli, T.; Pozzi, G. Org. Biomol. Chem.
2003, 1, 454. (b) Benaglia, M.; Cinquini, M.; Cozzi, F.; Celentano, F. Org.
Biomol. Chem. 2004, 2, 3401. (c) Li, X.; Wu, X.; Chen, W.; Hancock, F.
E.; King, F.; Xiao, J. Org. Lett. 2004, 6, 3321.
(14) In the case of 1-based catalysis, the optimal MeNO2/3 ratio was
10:1.
(15) The model reaction (MeNO2/4F-C6H4CHO) carried out in nitro-
methane as the solvent led to (S)-4a in 96% conversion and 50% ee.
1
25, 12692. (b) Gan, C.; Lai, G.; Zhang, Z.; Wang, Z.; Zhou, M.-M.
Tetrahedron: Asymmetry 2006, 17, 725. (c) Maheswaran, H.; Prasanth, K.
L.; Krishna, G. G.; Ravikumar, K.; Sridhar, B.; Lakshmi Kantam, M. Chem.
Commun. 2006, 4066. (d) Blay, G.; Climent, E.; Fern a´ ndez, I.; Hern a´ ndez-
Olmos, V.; Pedro, J. R. Tetrahedron: Asymmetry 2006, 17, 2046. (e) Xiong,
Y.; Wang, F.; Huang, X.; Wen, Y.; Feng, X. Chem.sEur. J. 2007, 13,
8
29.
10) Bandini, M.; Benaglia, M.; Quinto, T.; Tommasi, S.; Umani-Ronchi,
A. AdV. Synth. Catal. 2006, 348, 1521.
11) (a) Dickerson, T. J.; Reed, N. N.; Janda, K. D. Chem. ReV. 2002,
02, 3325. (b) Bergbreiter, D. E. Chem. ReV. 2002, 102, 3345. (c) Benaglia,
M.; Puglisi, A.; Cozzi, F. Chem. ReV. 2003, 103, 3401.
(
(
1
2152
Org. Lett., Vol. 9, No. 11, 2007