OP r lge aans i ec &d oB i on mo to al edc juu l as rt Cm h ae rmg iisnt rs y
Page 6 of 6
COMMUNICATION
Journal Name
Front. 2017, 4, 891; J. He, D. Qiu and Y. Li, Acc. Chem. Res.
020, 53, 508; C. Holden and M. F. Greaney, Angew. Chem.
Int. Ed. 2014, 53, 5746; A. V. Dubrovskiy, N. A. Markina and
R. C. Larock, Org. Biomol. Chem., 2013, 11, 191; H. Takikawa,
A. Nishii, T. Sakai and K. Suzuki, Chem. Soc. Rev., 2018, 47,
13 Y. Zhao, D.G. Truhlar, Theor Chem Acc., 2006, 120, 215.
2
14 G. Scalmani, M. J. Frisch, J. Chem. Phys., 2010, 132, 114110.
DOI: 10.1039/D0OB02285C
15 The [2+2] cycloaddition pathway was also calculated and was
found to have a barrier of 13.3 kcal/mol. The product of this
reaction was exergonic by 73.3 kcal/mol. This suggest
another potential competing pathway for the dimerization of
the allenes, although these products were not observed. See
Supporting Information for details.
8
030; D. Pérez, D. Peña and E. Guitián, European J. Org.
Chem., 2013, 5981.
4
C. M. Gampe and E. M. Carreira, Ange. Chem. Int. Ed. 2012,
5
1, 3766; J. Dommerholt, F. P. J. T. Rutjes and F. L. van Delft, 16 A. T. Bottini, L. L. Hilton and J. Plott, Tetrahedron, 1975, 31,
Top. Curr. Chem. 2016, 374:16, doi: 10.1007/s41061-016-
1997.
0
2
016-4; S. F. Tlais and R. L. Danheiser, J. Am. Chem. Soc.
014, 136, 11489; R. Nakura, K. Inoue, K. Okano and A. Mori,
17 Reviews: A. Palasz, Top. Curr. Chem. 2016, 374, 24; G.
Desimoni, G. Faita and P. Quadrelli, Chem. Rev. 2018, 118,
2080.
18 See Supporting Information for structures and details.
19 The favourable secondary orbital interactions in the [4+2]
cycloaddition of 7a with 15a are also responsible for making
this pathway more favourable than the [2+2] cycloaddition,
which occurs in a stepwise manner with an activation energy
of 16.2 kcal/mol. See Supporting Information for structures
and details.
Synth., 2019, 51, 1561; M. S. McVeigh, A. V. Kelleghan, M. M.
Yamano, R. R. Knapp and N. K. Garg, Org. Lett., 2020, 22,
4
Biomol. Chem., 2019, 17, 498; E. R. Darzi, J. S. Barber and N.
K. Garg, Angew. Chem. Int. Ed., 2019, 58, 9419.
R. P. Johnson, Chem. Rev. 1989, 89, 1111; M. Christl, in
Modern Allene Chemistry, N. Krause and A. S. K. Hashmi,
Eds., Wiley-VCH: Weinheim, 2005, pp. 243-357.
500; L. R. Domingo, M. Ríos-Gutiérrez and P. Pérez, Org.
5
6
J. S. Barber, E. D. Styduhar, H. V. Pham, T. C. McMahon, K. N.
Houk and N. K. Garg, J. Am. Chem. Soc. 2016, 138, 2512; V. A.
Lofstrand and F. G. West, Chem. Eur. J. 2016, 22, 10763; J. S.
Barber, M. M. Yamano, M. Ramirez, E. R. Darzi, R. R. Knapp,
F. Liu, K. N. Houk, and N. K. Garg, Nat. Chem. 2018, 10, 953;
M. M. Yamano, R. R. Knapp, A. Ngamnithiporn, M. Ramirez,
K. N. Houk, B. M. Stoltz and N. K. Garg, Angew. Chem., Int.
Ed. 2019, 58, 5653; V. A. Lofstrand, K. C. McIntosh, Y. A.
Almehmadi and F. G. West, Org. Lett. 2019, 21, 6231; M. S.
McVeigh, A. V. Kelleghan, M. M.Yamano, R. R. Knapp and N. K.
Garg, Org. Lett. 2020, 22, 4500; M. V. Westphal, L. Hudson, J. W.
Mason, J. Pradeilles, F. J. Zecri, K. Briner and S. L. Schreiber, J.
Am. Chem. Soc. 2020, 142, 7776; Y. A. Almehmadi and F. G.
West, Org. Lett. 2020, 22, 6091; M. M. Yamano, A. V. Kelleghan,
Q. Shao, M. Giroud, B. J. Simmons, B. Li, S. Chen, K. N. Houk and
N. K. Garg, Nature 2020, 586, 242.
7
W. C. Shakespeare and R. P. Johnson, J. Am. Chem. Soc.,
1
990, 112, 8578; I. Quintana, D. Peña, D. Pérez and E.
Guitián, Eur. J. Org. Chem., 2009, 5519.
8
9
1
1
G. Wittig and P. Fritze, Angew. Chem. Int. Ed. 1966, 5, 846; Y.
Hioki, A. Mori and K. Okano, Tetrahedron, 2020, 76, 131103.
M. Nendel, L. M. Tolbert, L. E. Herring, Md. N. Islam and K. N.
Houk, J. Org. Chem. 1999, 64, 976.
0 E. Fos, L. Borràs, M. Gasull, D. Mauleón and G. Carganico, J.
Heterocyclic Chem., 1992, 29, 203.
1 H.-S. Lin, A. A. Rampersaud, K. Zimmerman, M. I. Steinberg
and D. B. Boyd, J. Med. Chem., 1992, 35, 2658; Z. Jia, E.
Gálvez, R. M. Sebastián, R. Pleixats, Á. Álvarez-Larena, E.
Martin, A. Vallribera and A. Shafir, Angew. Chem. Int. Ed.,
2
014, 53, 11298.
1
2 DFT Calculations were performed using Gaussian09.e01.
Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M.
Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.
Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi,
J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe,
V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.
Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.
Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
6
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins