10.1002/cphc.201900703
ChemPhysChem
FULL PAPER
through singular value decomposition and global analysis performed using
the software Glotaran.[60]
[13] K. A. Zachariasse, M. Grobys, T. von der Haar, A. Hebecker, Y. V. Il’ichev,
Y.-B. Jiang, O. Morawski, W. Kühnle, J. Photochem. Photobiol. A Chem.
1996, 102, 59–70.
[14] K. A. Zachariasse, S. I. Druzhinin, W. Bosch, R. Machinek, J. Am. Chem.
Soc. 2004, 126, 1705–1715.
Computational details. All the quantum chemical calculations for TBP in
gas phase and solvents have been carried out using Density Functional
Theory (DFT) and Time Dependent DFT (TDDFT) as implemented in the
Gaussian 09 package.[59] The 6-31+g(d) basis set was adopted for all
calculations and a long-range Coulomb attenuated functional CAM-
B3LYP[61] was used both for geometry optimization and for the calculation
of vertical excited states. Calculation were run in gas phase and in
dichloromethane (DCM), cyclohexane and toluene, in the polarizable
continuum model (PCM)[62] approach (non-equilibrium, state-specific) as
implemented in Gaussian 09 package. The optimized ground state (S0)
geometries have been confirmed to be in local minimum energy structures
by analyzing the vibrational frequencies in the ground state. To look into
the excited state geometry in gas phase for TBP, optimization of the first
charge transfer (CT) state and the first local excited state (LE) were carried
out using the above-mentioned level of theory. We tried to look into the
optimized geometry of the excited state even in solvent, but due to
computational limitations and heavy nature of the calculations, it could not
be achieved. Since we are interested to the calculation of high-energy
excited states, a task that becomes too expensive in TDDFT, we have
resorted to the semi-empirical ZINDO calculations, as implemented in G09,
to look into the nature of the transitions.
[15] S. Murali, V. Kharlanov, W. Rettig, A. I. Tolmachev, A. V. Kropachev, J.
Phys. Chem. A 2005, 109, 6420–6429.
[16] N. Nakashima, M. Murakawa, N. Mataga, Bull. Chem. Soc. Jpn. 1976, 49,
854–858.
[17] S. A. Kovalenko, J. L. Pérez Lustres, N. P. Ernsting, W. Rettig, J. Phys.
Chem. A 2003, 107, 10228–10232.
[18] M. Jurczok, P. Plaza, M. M. Martin, Y. H. Meyer, W. Rettig, Chem. Phys.
2000, 253, 339–349.
[19] M. Jurczok, P. Plaza, W. Rettig, M. M. Martin, Chem. Phys. 2000, 256,
137–148.
[20] N. Mataga, H. Yao, T. Okada, W. Rettig, J. Phys. Chem. 1989, 93, 3383–
3386.
[21] S. Hashimoto, A. Yabushita, T. Kobayashi, K. Okamura, I. Iwakura, Chem.
Phys. 2018, 512, 128–134.
[22] W. Rettig, M. Maus, R. Lapouyade, Berichte der Bunsengesellschaft für
Phys. Chemie 1996, 100, 2091–2096.
[23] M. Maus, W. Rettig, G. Jonusauskas, R. Lapouyade, C. Rullière, J. Phys.
Chem. A 1998, 102, 7393–7405.
[24] M. Maus, W. Rettig, D. Bonafoux, R. Lapouyade, J. Phys. Chem. A 1999,
103, 3388–3401.
[25] M. Maus, W. Rettig, J. Phys. Chem. A 2002, 106, 2104–2111.
[26] J. Dobkowski, M. Kijak, I. V. Sazanovich, J. Waluk, J. Phys. Chem. B 2015,
119, 7294–7307.
Acknowledgements
[27] D. Vonlanthen, J. Rotzler, M. Neuburger, M. Mayor, Eur. J. Org. Chem.
2010, 2010, 120–133.
The authors gratefully acknowledge financial support from the
Italian Ministero dell’Istruzione, dell’Università e della Ricerca
(MIUR): grant RBFR10Y5VW (FIRB Futuro in Ricerca 2010) and
grant “Dipartimenti di Eccellenza” (DM 11/05/2017 n. 262). This
project has received funding from the European Union's Horizon
2020 research and innovation programme under grant agreement
No 812872 (TADFlife). This research benefits from the HPC (High
Performance Computing) facility of the University of Parma, Italy.
We thank Cédric Rouxel and Cynthia Vandermeulen for
assistance in the synthesis of TBP.
[28] W. Weigel, W. Rettig, M. Dekhtyar, C. Modrakowski, M. Beinhoff, A. D.
Schlüter, J. Phys. Chem. A 2003, 107, 5941–5947.
[29] S. Sasaki, G. P. C. Drummen, G. Konishi, J. Mater. Chem. C 2016, 4,
2731–2743.
[30] O. Mongin, L. Porrès, M. Charlot, C. Katan, M. Blanchard-Desce, Chem.
Eur. J. 2007, 13, 1481–1498.
[31] F. Bureš, RSC Adv. 2014, 4, 58826–58851.
[32] L. Donato, A. Mourot, C. M. Davenport, C. Herbivo, D. Warther, J. Léonard,
F. Bolze, J.-F. Nicoud, R. H. Kramer, M. Goeldner, et al., Angew. Chem.
Int. Ed. 2012, 51, 1840–1843.
[33] J. Cody, C. J. Fahrni, Tetrahedron 2004, 60, 11099–11107.
[34] M. Gantenbein, M. Hellstern, L. Le Pleux, M. Neuburger, M. Mayor, Chem.
Mater. 2015, 27, 1772–1779.
Keywords: electron transfer • dual fluorescence • solvation
dynamics • time-resolved spectroscopy • theoretical modelling
[35] O. V. Mikhnenko, R. Ruiter, P. W. M. Blom, M. A. Loi, Phys. Rev. Lett. 2012,
108, 137401.
[36] A. Helms, D. Heiler, G. McLendon, J. Am. Chem. Soc. 1992, 114, 6227–
6238.
[1] M. Mamedov, Govindjee, V. Nadtochenko, A. Semenov, Photosynth. Res.
2015, 125, 51–63.
[37] D. Vonlanthen, J. Rotzler, M. Neuburger, M. Mayor, Eur. J. Org. Chem.
2010, 2010, 120–133.
[2] H. Klauk, Organic Electronicsꢀ: Materials, Manufacturing and Applications,
Wiley-VCH, 2006.
[38] S. Suzuki, R. Sugimura, M. Kozaki, K. Keyaki, K. Nozaki, N. Ikeda, K.
Akiyama, K. Okada, J. Am. Chem. Soc. 2009, 131, 10374–10375.
[39] C. Rouxel, M. Charlot, O. Mongin, T. R. Krishna, A.-M. Caminade, J.-P.
Majoral, M. Blanchard-Desce, Chem. Eur. J. 2012, 18, 16450–16462.
[40] S. P. McIlroy, E. Cló, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V.
Mikkelsen, K. V. Gothelf, P. R. Ogilby, J. Org. Chem. 2005, 70, 1134–1146.
[41] J. Saltiel, V. K. R. Kumar, J. Phys. Chem. A 2012, 116, 10548–10558.
[42] M. Krämer, U. H. F. Bunz, A. Dreuw, J. Phys. Chem. A 2017, 121, 946–
953.
[3] L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, M. L.
Steigerwald, Nature 2006, 442, 904–907.
[4] A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater. 2004,
16, 4556–4573.
[5] S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324–
1338.
[6] B. Kippelen, J.-L. Brédas, Energy Environ. Sci. 2009, 2, 251.
[7] V. May, O. Kꢀhn, Charge and Energy Transfer Dynamics in Molecular
Systems, Wiley-VCH, 2011.
[43] M. Flock, L. Bosse, D. Kaiser, B. Engels, I. Fischer, Phys. Chem. Chem.
Phys. 2019, 21, 13157–13164.
[8] T. Kumpulainen, B. Lang, A. Rosspeintner, E. Vauthey, Chem. Rev. 2017,
117, 10826–10939.
[44]P. Meystre, M. Sargent, in Elem. Quantum Opt., Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007, pp. 51–91.
[9] C. A. Rumble, M. Maroncelli, J. Chem. Phys. 2018, 148, 193801.
[10] K. A. Zachariasse, S. I. Druzhinin, O. Morawski, B. Kozankiewicz, J. Phys.
Chem. A 2018, 122, 6985–6996.
[45] C. Sissa, V. Calabrese, M. Cavazzini, L. Grisanti, F. Terenziani, S. Quici,
A. Painelli, Chem. Eur. J. 2013, 19, 924–935.
[11] K. K. Mentel, A. Serra, P. E. Abreu, L. G. Arnaut, Nat. Commun. 2018, 9,
2903.
[46] B. Boldrini, E. Cavalli, A. Painelli, F. Terenziani, J. Phys. Chem. A 2002,
106, 6286–6294.
[12] W. Schuddeboom, S. A. Jonker, J. M. Warman, U. Leinhos, W. Kuehnle, K.
A. Zachariasse, J. Phys. Chem. 1992, 96, 10809–10819.
This article is protected by copyright. All rights reserved.