COMMUNICATIONS
Enantioselective Fluorination of b-Ketoamides
the internal solvent signals. Thin layer chromatography was References
performed using silica gel; F254 TLC plates and visualized
with ultraviolet light. HPLC was carried out with a Agilent
Technologies 1260 Infinity system equipped with a photo-
diode array detector. ESI mass spectra were performed on
a Trace DSQ GC/MS spectrometer. Data are reported in
the form of (m/z). High Resolution Mass Spectra (ESI-
HRMS) were operated on a micro TOF-Q II (Bruker). IR
spectra were recorded using a FTIR apparatus (Nicolot
5700). Melting point was recorded by X-4 Optimelt (Shang-
hai optical instrument factory). Optical rotation was deter-
mined by SGW-3 Digital Automatic Polarimeter (Shanghai
INESA Physico Optical instrument Co., Ltd). The absolute
configuration was determined by single-crystal X- ray. X-ray
diffraction: Data sets were collected with Bruker APEX
DUO and Bruker APEX-II CCD diffractometers. Programs
used: data collection Bruker APEX2,[21a] data reduction
Bruker SAINT, absorption correction for multi-scan, struc-
ture solution SHELX-97,[21b] structure refinement SHELXL-
97,[21b] graphics Bruker SHELXTL.[21b]
[1] a) J. A. Ma, D. Cahard, Chem. Rev. 2004, 104, 6119 and
J. A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR1; b) S.
Lectard, Y. Hamashima, M. Sodeoka, Adv. Synth.
Catal. 2010, 352, 2708; c) T. Liang, C. N. Neumann, T.
Ritter, Angew. Chem. 2013, 125, 8372; Angew. Chem.
Int. Ed. 2013, 52, 8214.
[2] a) M. G. Campbell, T. Ritter, Org. Process Res. Dev.
2014, 18, 474; b) K. L. Kirk, Org. Process Res. Dev.
2008, 12, 305; c) P. T. Nyffeler, S. G. Durꢃn, M. D. Bur-
kart, S. P. Vincent, C. H. Wong, Angew. Chem. 2005,
117, 196; Angew. Chem. Int. Ed. 2005, 44, 192.
[3] J. Wang, M. Sꢄnchez-Rosellꢃ, J. L. AceÇa, C. del Pozo,
A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H.
Liu, Chem. Rev. 2014, 114, 2432.
[4] For selected reviews, see: a) M. Ueda, T. Kano, K. Mar-
uoka, Org. Biomol. Chem. 2009, 7, 2005; b) C. Bobbio,
V. Gouverneur, Org. Biomol. Chem. 2006, 4, 2065;
c) N. Shibata, T. Ishimaru, S. Nakamura, T. Toru, J.
Fluor. Chem. 2007, 128, 469; d) A. M. R. Smith, K. K.
Hii, Chem. Rev. 2011, 111, 1637.
General Procedures for the Asymmetric Fluorination
[5] a) L. Hintermann, A. Togni, Angew. Chem. 2000, 112,
4350; Angew. Chem. Int. Ed. 2000, 39, 4359; b) S.
Piana, I. Devillers, A. Togni, U. Rothlisberger, Angew.
Chem. 2002, 114, 1021; Angew. Chem. Int. Ed. 2002, 41,
979; c) L. Hintermann, M. Perseghini, A. Togni, Beil-
stein J. Org. Chem. 2011, 7, 1421; d) A. Bertogg, L.
Hintermann, D. P. Huber, M. Perseghini, M. Sanna, A.
Togni, Helv. Chim Acta 2012, 95, 353.
[6] For recent examples, see: a) S. Shirakawa, T. Tokuda,
A. Kasai, K. Maruoka, Org. Lett. 2013, 15, 3350; b) J.
Luo, W. Wu, L. W. Xu, Y. Meng, Y. Lu, Tetrahedron
Lett. 2013, 54, 2623; c) V. Rauniyar, A. D. Lackner,
G. L. Hamilton, F. D. Toste, Science 2011, 334, 1681;
d) F. Li, J. Nie, J. W. Wu, Y. Zheng, J. A. Ma, J. Org.
Chem. 2012, 77, 2398; e) R. J. Phipps, K. Hiramatsu,
F. D. Toste, J. Am. Chem. Soc. 2012, 134, 8376; f) Y.
Cai, J. Li, W. Chen, M. Xie, X. Liu, L. Lin, X. Feng,
Org. Lett. 2012, 14, 2726; g) J. Li, Y. Cai, W. Chen, X.
Liu, L. Lin, X. Feng, J. Org. Chem. 2012, 77, 9148; h) P.
Kwiatkowski, T. D. Beeson, J. C. Conrad, D. W. C. Mac-
Millan, J. Am. Chem. Soc. 2011, 133, 1738; i) X. Y.
Yang, R. J. Phipps, F. D. Toste, J. Am. Chem. Soc. 2014,
136, 5225.
[7] For palladium and nickel catalysis, see: a) S. H. Kang,
D. Y. Kim, Adv. Synth. Catal. 2010, 352, 2783; b) Y. Ha-
mashima, T. Suzuki, H. Takano, Y. Shimura, M. Sodeo-
ka, J. Am. Chem. Soc. 2005, 127, 10164; c) H. R. Kim,
D. Y. Kim, Tetrahedron Lett. 2005, 46, 3115; d) S. M.
Kim, H. R. Kim, D. Y. Kim, Org. Lett. 2005, 7, 2309;
e) N. Shibata, J. Kohno, K. Takai, T. Ishimaru, S. Naka-
mura, T. Toru, S. Kanemasa, Angew. Chem. 2005, 117,
3769; Angew. Chem. Int. Ed. 2005, 44, 4204; f) T.
Suzuki, T. Goto, Y. Hamashima, M. Sodeoka, J. Org.
Chem. 2007, 72, 246.
[8] a) J. A. Ma, D. Cahard, Tetrahedron: Asymmetry 2004,
15, 1007; b) A. Narayama, K. Shibatomi, Y. Soga, T.
Muto, S. Iwasa, Synlett 2013, 24, 375; c) M. Frings, C.
Bolm, Eur. J. Org. Chem. 2009, 4085; d) K. Shibatomi,
A. Narayama, Y. Soga, T. Muto, S. Iwasa, Org. Lett.
2013, 13, 2944; e) N. Shibata, T. Ishimaru, T. Nagai, J.
of b-Ketoamides 13
To a flask charged with CuACHTUNGRTNEUNG(OOCCF3)2·H2O (0.01 mmol,
2.9 mg) and (R,R,R,R)- L1 f (0.005 mmol, 4.3 mg) in solution
(DCM/xylene=2:1, 0.6 mL) was stirred at room tempera-
ture until the mixture turn from blue to brown. Then the b-
ketoamide 13 (0.20 mmol in 0.4 mL DCM) was added, then
0.4 mL xylene was added and stirred 5 min at room temper-
ature. After the reaction was cooled to À408C, NFSI
(0.22 mmol, 69.3 mg) was added in a portion. Then the reac-
tion was stirred for 12 h until completion (monitored by
TLC, PE/AcOEt=4:1). The solvent was removed under
vacuum and the product 14 was isolated by flash chromatog-
raphy (PE/AcOEt 5:1 to 4:1). The absolute configuration of
compounds 14 was assigned to be (S) by analogy to the
structure determined by single-crystal X-ray analysis per-
formed on compound 14a (see the X- ray analysis section).
All the products are confirmed by GC-MS, NMR, and IR,
and representative characterization data for 14 are listed in
the Supporting Information (SI).
Acknowledgements
Support for this Project was by the National Natural Science
Founder of China (No. 21173064, 51303043, and 21472031),
and Zhejiang Provincial Natural Science Foundation of
China (LR14B030001) is appreciated. XLW thank Dr. Zheng
Xu for her help in the calculation of the HOMO–LUMO of
the substrate. XLW also thank Prof. M. Kanai (The Universi-
ty of Tokyo), Prof. Y. Lu (The National University of Singa-
pore), Prof. M. Shibasaki (The University of Tokyo and In-
stitute of Microbial Chemistry, Tokyo), and Prof. C. G. Xia
(Lanzhou Institute of Chemical Physics, CAS) for their help
in the past years.
Adv. Synth. Catal. 0000, 000, 0 – 0
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7
ÞÞ
These are not the final page numbers!