Full Paper
[6] a) Heterocycles: A. Furstner, T. Dierkes, O. R. Thiel, G. Blanda, Chem. Eur.
J. 2001, 7, 5286–5298; b) D. T. Davies, N. Kapur, A. F. Parsons, Tetrahedron
2000, 56, 3941–4030; c) M. A. Brodney, A. Padwa, J. Org. Chem. 1999, 64,
556–565.
[7] a) J.-A. Ma, Angew. Chem. Int. Ed. 2003, 42, 4290–4299; Angew. Chem.
2003, 115, 4426; b) W. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029–3070.
[8] a) G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054–3131;
b) F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954–6971;
Angew. Chem. 2009, 121, 7088; c) G. Evano, C. Theunissen, A. Pradal, Nat.
Prod. Rep. 2013, 30, 1467–1489.
[20] a) C. Herber, B. Breit, Eur. J. Org. Chem. 2007, 3512–3519; b) K. C. Nicol-
aou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H. Vallberg, M. R. V.
Finlay, Z. Yang, J. Am. Chem. Soc. 1997, 119, 7974–7991; c) G. Sudhakar,
K. J. Reddy, J. B. Nanubolu, Tetrahedron 2013, 69, 2419–2429.
[21] E. J. Corey, S. Shibata, R. K. Bakshi, J. Org. Chem. 1988, 53, 2861–2863.
[22] a) J. B. Epp, T. S. Widlanski, J. Org. Chem. 1999, 64, 293–295; b) J. S. Yadav,
Ch. S. Reddy, Org. Lett. 2009, 11, 1705–1708.
[23] Q. Zhou, X. Chen, D. Ma, Angew. Chem. Int. Ed. 2010, 49, 3513–3516;
Angew. Chem. 2010, 122, 3591.
[24] a) Z. Huang, E.-I. Negishi, Org. Lett. 2006, 8, 3675–3678; b) A. Chihui, J. A.
Jurica, S. P. Walsh, A. T. Hoye, A. B. Smith, J. Org. Chem. 2013, 78, 4278–
4296; c) J. Schwartz, J. A. La-binger, Angew. Chem. Int. Ed. Engl. 1976, 15,
333–340; Angew. Chem. 1976, 88, 402.
[9] T. Hu, C. Li, Org. Lett. 2005, 7, 2035–2038.
[10] a) M. Toumi, F. Couty, G. Evano, Angew. Chem. Int. Ed. 2007, 46, 572–575;
Angew. Chem. 2007, 119, 578; b) M. Toumi, F. Couty, G. Evano, J. Org.
Chem. 2007, 72, 9003–9009.
[11] a) A. Klapars, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124,
7421–7428 and references cited therein. For other copper-catalyzed en-
amide formation reactions, see: b) R. Shen, C. T. Lin, J. A. Porco, J. Am.
Chem. Soc. 2002, 124, 5650–5651.
[25] Conversion of the aldehyde, obtained from alcohol 22, into the gem-
dibromo compound and later into the vinyl iodide moiety via the alkyne
by applying a set of reactions similar to those summarized in Scheme 4
was not successful:
[12] a) R. Tello-Aburto, E. M. Johnson, C. K. Valdez, W. A. Maio, Org. Lett. 2012,
14, 2150–2153; b) R. Tello-Aburto, T. D. Newar, W. A. Maio, J. Org. Chem.
2012, 77, 6271–6289.
[13] S. C. Philkhana, B. Seetharamsingh, Y. B. Dangat, K. Vanka, D. Sriniv-
asa Reddy, Chem. Commun. 2013, 49, 3342–3344.
[14] H.-S. Kang, A. Krunic, J. Orjala, Tetrahedron Lett. 2012, 53, 3563–3567.
[15] a) D. Klein, J.-C. Braekman, D. Daloze, Tetrahedron Lett. 1996, 37, 7519–
7520; b) S. Matthew, L. A. Salvador, P. J. Schupp, V. J. Paul, H. Luesh, J.
Nat. Prod. 2010, 73, 1544–1552.
[16] D. Klein, J. C. Braekman, D. Daloze, L. Hoffmann, G. Castillo, V. Demoulin,
J. Nat. Prod. 1999, 62, 934–936.
[17] The substrate was synthesized starting from 1,13-tridecanediol; see the
Supporting Information for its synthesis.
[18] The primary enamide product spectra were not clear because of the
existence of rotameric forms. Hence, all the enamide products after cycli-
zation were immediately converted into the corresponding stable N-
methylated products, isolated, and further characterized.
[19] a) J. S. Yadav, B. Suresh, P. Srihari, Eur. J. Org. Chem. 2015, 5856–5863; b)
J. S. Yadav, V. K. Singh, P. Srihari, Org. Lett. 2014, 16, 836–839; c) Y. Sridhar,
P. Srihari, Org. Biomol. Chem. 2014, 12, 2950–2959; d) Y. Sridhar, P. Srihari,
Eur. J. Org. Chem. 2013, 578–587; e) J. S. Yadav, G. Rajendar, P. Srihari, B.
Sridhar, Org. Lett. 2013, 15, 3782–3785; f) Y. Sridhar, P. Srihari, Org.
Biomol. Chem. 2013, 11, 4640–4645; g) P. Srihari, K. Satyanarayana, J. S.
Yadav, J. Org. Chem. 2011, 76, 1922–1925.
Received: March 16, 2016
Published Online: April 24, 2016
Eur. J. Org. Chem. 2016, 2509–2513
2513
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim