1370
Vol. 53, No. 10
Table 3. Palladium-Catalyzed Coupling Reaction of 1 and 2 under Various Reaction Conditions
Yields of the products/%a)
Method B (MW-Irrn.)c)
2
Ar
Method A (conventional)b)
Method C (MW-Irrn.)d)
3
4
3
4
3
4
a
b
c
d
e
f
g
h
C6H5
49
77
73
89
46
30
32
35
21
11
20
5
47
—
64
79
59
30
32
59
33
—
21
21
29
25
34
25
63
76
75
83
75
57
48
48
23
21
14
14
19
16
26
41
o-NO2C6H4
m-NO2C6H4
p-NO2C6H4
p-CH3COC6H4
o-CH3C6H4
p-CH3C6H4
p-CH3OC6H4
7
20
20
25
a) GC yields. b) Method A: A mixture of 1 (1 mmol), 2 (1.5 mmol), and Pd cat. (10 mol%) in Et2NH (5 ml) was refluxed (55 °C) for 24 h under argon atmosphere. c)
Method B: A mixture of 1 (1 mmol), 2 (1.5 mmol), and Pd cat. (5 mol%) in DMSO (3 ml) was irradiated using the MW system (300 W, Max. Temp. 130 °C for 2a, e—g, and 80 °C
for 2b—d) for 3 min. d) Method C: A mixture of 1 (1 mmol), 2 (5 mmol), CTMAB (1 mmol), and Pd cat. (0.5 mol%) in DMSO (3 ml) was irradiated using the MW system
(300 W, Max. Temp. 130 °C for 2a, e—g, and 80 °C for 2b—d) for 1 min.
products 3a (21%) and 4 (4%) in poor yields, indicating the versity, which are gratefully acknowledged.
presence of the catalyst is not essential in the present reac-
tion. However, prolonged MW irradiation (10 min) of the re-
References and Notes
1) Hayes B. L., “Microwave Synthesis; Chemistry at the Speed of Light,”
action mixture did not show noticeable improvement in the
yields of 3a (29%) and 4 (8%).
CEM Publishing, Matthews, NC, 2002.
2) Loupy A., “Microwave in Organic Synthesis,” Wiley-VCH, Weinheim,
2002.
To study the scope of this MW-assisted coupling reaction,
we finally performed the coupling reaction of 1 with a variety
of aryl iodides 2a—h using 5 eq of 2 with shorter reaction
time (1 min) (Method C), and the results are summarized in
Table 3 (Caution).29) The results obtained from the conven-
tional methods (Method A)9) and under the condition em-
ployed in entry 5 in Table 1 (Method B) are also shown for
ready comparison with those of Method C. In most cases, su-
perior results were obtained in terms of yields of the cou-
pling products and reaction time, when the reaction was run
in DMSO in the presence of CTMAB. Thus, MW irradiation
of a mixture of 1 and 2a in DMSO with 1 eq. of CTMAB
with respect to the stibane 1 for 1 min afforded 3a and 4 in
3) De la Hoz A., Díaz-Ortiz Á., Moreno A., Chem. Soc. Rev., 34, 164—
178 (2005).
4) Leadbeater N. E., Torenius H. M., Tye H., Combinatorial Chemistry &
High Throughput Screening, 7, 511—528 (2004).
5) Larhed M., Moberg C., Hallberg A., Acc. Chem. Res., 35, 717—727
(2002).
6) Lidström P., Tierney J., Wathey B., Westman J., Tetrahedron, 57,
9225—9283 (2001).
7) Kakusawa N., Yamaguchi K., Kurita J., Tsuchiya T., Tetrahedron Lett.,
41, 4143—4146 (2000).
8) Kakusawa N., Yamaguchi K., Kurita J., J. Organomet. Chem., 690,
2956—2966 (2005).
9) Kakusawa N., Tobiyasu T., Yasuike S., Yamaguchi K., Seki H., Kurita
J., Tetrahedron Lett., 44, 8589—8592 (2003).
10) Sørensen U. S., Pombo-Villar E., Tetrahedron, 61, 2697—2703 (2005).
63% and 23% yields, respectively. This reaction is sensitive 11) Seganish M. W., DeShong P., Org. Lett., 6, 4379—4381 (2004).
12) Wang Y., Sauer D. R., Org. Lett., 6, 2793—2796 (2004).
13) Zhang W., Chen C. H.-T., Lu Y., Nagashima T., Org. Lett., 6, 1473—
to the electronic nature of the substituent on aryl iodides.
Aryl iodides with electron-attracting groups gave coupling
products in better yields than those with electron-donating
1476 (2004).
14) Leadbeater N. L., Marco M., Tominack B. J., Org. Lett., 5, 3919—
groups. Noticeable increase in the yield of the homo-cou-
pling product 4 was also observed under MW irradiation
conditions, especially when the reaction was performed with
2 having electron-donating groups. The result implies that
the product 4 should be a thermodynamically controlled
product. Use of bromobenzene instead of aryl iodides as a
coupling partner resulted in significant decrease in the yields
of 3a (5%) and 4 (8%). It has been well documented that aryl
bromides and chlorides are less reactive than the correspond-
ing aryl iodides in a wide range of transition metal-catalyzed
coupling reactions.30—33)
3922 (2003).
15) Stanetty P., Schnürch M., Mihovilovic M. D., Synlett, 2003, 1862—
1864 (2003).
16) Maes B. U. W., Loones K. T. J., Lemière G. L. F., Dommisse R. A.,
Synlett, 2003, 1822—1825 (2003).
17) Khalafi-Nezhad A., Zarea A., Soltani Rad M. N., Mokhtari B.,
Parhami A., Synthesis, 2005, 419—424 (2005).
18) Botella L., Nájera C., Tetrahedron, 60, 5563—5570 (2004).
19) Leadbeater N. E., Marco M., J. Org. Chem., 68, 5660—5667 (2003).
20) Leadbeater N. E., Marco M., Angew. Chem., Int. Ed., 42, 1407—1409
(2003).
21) Leadbeater N. E., Marco M., Org. Lett., 4, 2973—2976 (2002).
22) Habermann J., Ponzi S., Ley S. V., Mini-Reviews in Organic
Chemistry, 2, 125—137 (2005).
In summary, we have demonstrated an efficient MW-as-
sisted coupling reaction between ethynylstibane and aryl io-
dides in the presence of tetra-alkylammonium salt to form di-
arylalkynes. It should be reemphasized that the reaction pro-
23) Liao M., Duan X., Liang Y., Tetrahedron Lett., 46, 3469—3472
(2005).
24) Xie X., Lu J., Chen B., Han J., She X., Pan X., Tetrahedron Lett., 45,
809—811 (2004).
ceeds in greatly reduced time by use of 0.5 mol% of Pd cata- 25) Ranu B. C., Jana R., Dey S. S., Chem. Lett., 33, 274—275 (2004).
26) Leadbeater N. E., Torenius H. M., Tye H., Tetrahedron, 59, 2253—
lyst with CTMAB.
This work was supported by a Grant-in-Aid for Scientific
Research on Priority Areas (A) from The Ministry of Educa-
2258 (2003).
27) Vallin K. S. A., Emilsson P., Larhed M., Hallberg A., J. Org. Chem.,
67, 6243—6246 (2002).
tion, Culture, Sports, Science and Technology (MEXT),
Japan, and by The Specific Research Fund of Hokuriku Uni-
28) Leadbeater N. E., Torenius H. M., J. Org. Chem., 67, 3145—3148
(2002).