Communication
Organic & Biomolecular Chemistry
Chem., 2003, 46, 4552; (b) U. Beutler, P. C. Fuenfschilling
and A. Steinkemper, Org. Process Res. Dev., 2007, 11, 341;
(c) A. Fleckenstein and H. Plenio, Chem. – Eur. J., 2007, 13,
2701.
2 (a) H. Reisch, U. Wiester, U. Scherf and N. Tuytuylkov,
Macromolecules, 1996, 29, 8204; (b) S. Merlet, M. Birau and
Z. Y. Wang, Org. Lett., 2002, 4, 2157; (c) U. Scherf and
E. J. W. List, Adv. Mater., 2002, 14, 477; (d) D. Katsis,
Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska,
S. H. Chen and L. J. Rothberg, Chem. Mater., 2002, 14,
1332; (e) T. Hadizad, J. Zhang, Z. Y. Wang, T. C. Gorjanc
and C. Py, Org. Lett., 2005, 7, 795; (f) F. Jaramillo-Isaza and
M. L. Turner, Mater. Chem., 2006, 16, 83.
3 (a) K. Miyatake, B. Bae and M. Watanabe, Polym. Chem.,
2011, 2, 1919; (b) A. G. Fix, D. T. Chase and M. M. Haley,
Top. Curr. Chem., 2014, 349, 159; (c) K. R. Justin Thomas
and A. Baheti, Mater. Technol., 2013, 28, 71.
4 (a) M. T. Bernius, M. Inbasekaran, J. O’Brien and W. Wu,
Adv. Mater., 2000, 12, 1737; (b) U. Scherf and E. J. W. List,
Adv. Mater., 2002, 14, 477; (c) J. U. Wallace and
S. H. Chen, Adv. Polym. Sci., 2008, 212, 145;
(d) K. D. Belfield, S. Yao and M. V. Bondar, Adv. Polym.
Sci., 2008, 213, 97.
5 (a) F.-C. Fang, C.-C. Chu, C.-H. Huang, G. Raffy,
A. D. Guerzo, K.-T. Wong and D. M. Bassani, Chem.
Commun., 2008, 6369; (b) Z. Peng, S. Tao and X. Zhang,
J. Phys. Chem. C, 2008, 112, 2165; (c) L. Rong, Q. Liu, Y. Shi
and J. Tang, Chem. Commun., 2011, 47, 2155; (d) H.-g. Li,
G. Wu, H.-Z. Chen and M. Wang, Org. Electron., 2011, 12,
70; (e) L.-H. Xie, X.-Y. Hou, Y.-R. Hua, C. Tang, F. Liu,
Q.-L. Fan and W. Huang, Org. Lett., 2006, 8, 3701.
6 (a) C. Gadermaier, L. Luer, A. Gambetta, T. Virgili,
M. Zavelani-Rossi and G. Lanzani, in Semiconducting
Polymers, ed. G. Hadziioannou and G. G. Malliaras, Wiley-
VCH, Weinheim, Germany, 2nd edn, 2007, pp. 205–234;
(b) Y. Ie, Y. Umemoto, M. Nitani and Y. Aso, Pure Appl.
Chem., 2008, 80, 589.
Scheme 3 Deuterium scrambling experiment.
partially decomposed. The mechanism for departure of
cyanide from 7 is unclear.24 The plausible mechanism for this
transformation would be an intermolecular SNAr reaction of
arylcyanide 2 with 1a in the presence of K(NSiMe3)2 provides
the corresponding ring opening product. Trimethylsilylation
of SO2K unit with HN-(SiMe3)2, generated in situ, delivers
8.20,25 Deprotonation of active methyne proton in compound 8
followed by intramolecular SNAr reaction would take place to
afford 7. The elimination of cyanide group from 7 would
provide 9-arylfluorene 3.
The acidic nature of the hydrogen at the 9-position of 3a
was confirmed by a deuterium scrambling experiment, which
revealed the formation of a stable Hückel aromatic compound
9-arylfluorenyl anion26 in the presence of KN(SiMe3)2
(Scheme 3).
In summary, we have demonstrated a KHMDS mediated
synthesis of 9-arylfluorenes from readily available starting
materials arylacetonitrile and dibenzothiophene dioxide.
The initial substitution pattern of the dibenzothiophene
derivatives was retained in the final 9-arylfluorenes. This
method could also be extended to the preparation of the
densely arylated 1,2,3-triphenyl-1H-indene. Current efforts are
directed at investigating the mechanism and application of the
final products in materials chemistry.
Conflicts of interest
7 (a) O. Inganas, F. Zhang and M. R. Andersson, Acc. Chem.
Res., 2009, 42, 1731; (b) G. Dennler, M. C. Scharber and
C. J. Brabec, Adv. Mater., 2009, 21, 1323; (c) M. Bendikov,
F. Wudl and D. F. Perepichka, Chem. Rev., 2004, 104, 4891;
(d) J. E. Anthony, Chem. Rev., 2006, 106, 5028;
(e) A. R. Murphy and J. M. J. Frechet, Chem. Rev., 2007, 107,
1066.
8 (a) C. A. Fleckenstein and H. Plenio, Chem. – Eur. J., 2007,
13, 2701; (b) H. G. Alt, R. W. Baker, M. Dakkak,
M. A. Foulkes, M. O. Schilling and P. Turner, J. Organomet.
Chem., 2004, 689, 1965; (c) R. W. Baker, M. A. Foulkes,
M. Griggs and B. N. Nguyen, Tetrahedron Lett., 2002, 43,
9319.
There are no conflicts to declare.
Acknowledgements
We gratefully acknowledge the DST-SERB (Grant Ref. No., ECR/
2016/001092 & EEQ/2017/000768); UGC (File No. 30-356/2017
(BSR) for research funding. We thank DST-FIST (Grant No., SR/
FST/CSI-257/2014(C) research grant to the Department of
Chemistry, and also thank Central University of Rajasthan for
support. S. M. and M. Y. thank DST and CSIR, respectively, for
fellowships. We are grateful to Dr Nagarjuna Kommu (UoH)
for solving the X-ray crystallographic data.
9 V. Chandrasekhar, R. S. Narayanan and P. Thilagar,
Organometallics, 2009, 28, 5883.
10 J. Wang, W. Wan, H. Jiang, Y. Gao, X. Jiang, H. Lin,
W. Zhao and J. Hao, Org. Lett., 2010, 12, 3874.
Notes and references
1 (a) L. R. Morgan, K. Thangaraj, B. LeBlanc, A. Rodgers, 11 (a) J.-J. Chen, S. Onogi, Y.-C. Hsieh, C.-C. Hsiao,
L. T. Wolford, C. L. Hooper, D. Fan and B. S. Jursic, J. Med.
S. Higashibayashi, H. Sakurai and Y.-T. Wu, Adv. Synth.
7818 | Org. Biomol. Chem., 2018, 16, 7815–7819
This journal is © The Royal Society of Chemistry 2018