10.1002/chem.201700622
Chemistry - A European Journal
Keywords: bromination • C,C coupling • dehydrobromination • natural
products • nonbenzenoid aromatics • ring-closing olefin metathesis •
Full experimental details are given in the Supporting Information.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
[22] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923-2925.
[23] The respective 1H-NMR resonances (CDCl3, 400 MHz) were: δ7-H
= 2.59 (d, 3J7,8 = 7.7 Hz), δ8-H = 6.26 ppm (t, 3J8,7 = 7.7 Hz).
[24] Pertinent 1H-NMR resonances (CDCl3, 400 MHz) were: δ7-H = 3.15
(d, 4J7,9 = 1.4 Hz), δ9-H = 6.26 ppm (t, 4J9,7 = 1.4 Hz).
[25] Pd-catalyzed ester formations under related conditions are known,
e.g., in the presence of the diphosphanes Xantphos (J. R.
Mantinelli, D. A. Watson, D. M. M. Freckmann, T. E. Barder, S. L.
Buchwald, J. Org,. Chem. 2008, 73, 7102-7107) or BINAP (W.
Yang, W. Han, W. Zhang, L. Shan, J. Sun, Synlett 2011, 2253-
2255).
[1] M. J. S. Dewar, Nature 1945, 155, 50-51.
[2] R. L. Redington, J. Chem. Phys. 2000, 113, 2319-2335.
[3] K. Tanaka, R. Nagahiro, S. Ohba, M. Eishima, Tetrahedron Lett.
2001, 42, 925-929.
[4] M. Randić, Chem. Rev. 2003, 103, 3449-3605.
[5] S. Sang, S. Tian, X. Meng, R. E. Stark, R. T. Rosen, C. S. Yang,
C.-T. Ho, Tetrahedron Lett. 2002, 43, 7129-7134.
[6] a) First chemical synthesis: M. A. Girard, C. R. Hebd. Séances
Acad. Sci. 1869, 69, 865-868; b) first enzymatic synthesis: M. G.
Bertrand, C. R. Hebd. Séances Acad. Sci. 1895, 120, 267-269.
[7] E. g. a) Y. Kawabe, Y. Aihara, Y. Hirose, A. Sakurada, A. Yoshida,
M. Inai, T. Asakawa, Y. Hamashima, T. Kan, Synlett 2013, 479-
482; b) K. Cheng, X. Wang, S. Zhang, H. Yin, Angew. Chem. Int.
Ed. 2012, 51, 12246-12249; c) L. Kerschensteiner, F. Löbermann,
W. Steglich, D. Trauner, Tetrahedron 2011, 67, 1536-1539; d) C.
Huang, H. Bai, C. Li, G. Shi, Chem. Commun. 2011, 47, 4962-4964.
[8] Analogues of the surmised 1,9-dihydroxy-4a,5-dihydro-9H-5,9-
methanobenzocycloheptene-2,8,10-trione and 3,4,5-trihydroxy-5,9-
dihydro-5,9-methanobenzocycloheptene-6,10-dione intermediates
of such oxidations were isolated by a) W. Dürckheimer, E. F. Pau-
lus, Angew. Chem. Int. Ed. Engl. 1985, 24, 224-225 and b) E.
Yanase, K. Sawaki, S.-i. Nakatsuka, Synlett 2005, 17, 2661-2663,
respectively.
[26] N. Fukui, K. Ohmori, K. Suzuki, Helv. Chim. Acta 2012, 95, 2194-
2202.
[27] The crystallographic data of tribromide cis-53 are contained in
CCDC 1505661. They can be obtained free of charge from the
Cambridge Crystallographic Data Centre via the link
[28] Pertinent 1H-NMR resonances (CDCl3, 400 MHz): δ7-H = 3.16 (d,
4J7,9 = 0.5 Hz), δ9-H = 7.08 ppm (t, 4J9,7 = 0.5 Hz).
[29] Interestingly, the bromoarene/bromoolefin 54 revealed a potential
for being amenable to differential sequential biscouplings: It
picked up a C1-substituted propargyl alcohol selectively at C8−Br
(76% yield).
[9] E. A. Kurt-Jones, M. Chan, S. Zhou, J. Wang, G. Reed, R. Bronson,
M. M. Arnold, D. M. Knipe, R. W. Finberg, Proc. Natl. Acad. Sci.
USA 2004, 101, 1315-1320.
[10] S. Zhou, A. M. Cerny, G. Bowen, M. Chan, D. M. Knipe, E. A.
Kurt-Jones, R. W. Finberg, Antiviral Res. 2010, 87, 295-306.
[11] a) Isolation: E. A. H. Roberts, M. J. Myers, Sci. Food Agric. 1959,
10, 176-179; b) structure: A. L. Davis, Y. Cai, A. P. Davies, Magn.
Res. Chem. 1995, 33, 549-552.
[12] D. Klostermeyer, L. Knops, T. Sindlinger, K. Polborn, W. Steglich,
Eur. J. Org. Chem. 2000, 4, 603-609.
[13] D. Arican, Diplomarbeit, Universität Freiburg, 2008.
[14] D. Arican, R. Brückner, Org. Lett. 2013, 15, 2582-2585.
[15] [1,3-Bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro-
(phenylmethylene)(tricyclohexylphosphane)ruthenium.
[16] D. Arican, Dissertation, Universität Freiburg, 2013.
[17] The configurational assignments of dibromides trans-19 vs. cis-19
were based on 1H-NMR comparisons with dibromides trans-24
and cis-24; the configuration of dibromide cis-24 was clear from
the X-ray analysis (Scheme 3). For example, the coupling constant
3J8,9 differed characteristically in trans-19 (4.6 Hz) and trans-24
(4.5 Hz) from the 1.9 Hz measured for both cis-19 and cis-24.
[18] 1H NMR20, tropolone moiety (CDCl3, 400 MHz): δOMe = 3.85 (d, 5JOMe,7
=
0.4 Hz), δ7-H = 6.20 (dq, 3J7,8 = 9.8 Hz, 5J7,OMe = 0.4 Hz), δ8-H = 7.39
ppm (d, 3J8,7 = 9.8 Hz).
[19] The crystallographic data of dibromide cis-24 are contained in
CCDC 1505660. They can be obtained free of charge from the
Cambridge Crystallographic Data Centre via the link
[20] The intermediacy of bromonium-ion 27 (Scheme 3) in the bromi-
nation of benzocycloheptadienone 18 explains why dibromide
trans-19 results with a 94:6 preference (Scheme 2). The cis-
addition of bromine to benzocycloheptadienone 23 implies the
intermediacy of carbenium-ion 25 (Scheme 3). It remains unknown
whether the latter forms directly from the reactants or indirectly
from a trans→cis isomerization of initially formed dibromide
trans-24. Carbenium-ion 25 looks stabilized by the +M effect of
one methoxy group.
[21] Benzocycloheptadienone 23 shares a styrene motif with certain
olefins, which add chlorine cis-selectively but not bromine: a) S. J.
Cristol, F. R. Stermitz, P. S. Ramey, J. Am. Chem. Soc. 1956, 78,
4939-4941; b) G. E. Heasley, T. R. Bower, K. W. Dougharty, J. C.
Easdon, V. L. Heasley, S. Arnold, T. L. Carter, D. B. Yaeger, B. T.
Gipe, D. F. Shellhamer, J. Org. Chem. 1980, 45, 5150-5155.
6
This article is protected by copyright. All rights reserved.