Table 4 The catalytic properties shown by 3D Ti-MWW and IEZ-Ti-MWW prepared with different silylating agents in the oxidation of cyclohexenea
Cyclohexene oxidation
Product sel. (mol%)
oxide
H2O2 (mol%)
conv.
Silylating agent
Conv.(mol%)
othersb
sel.
None
TEOS
Triethoxymethylsilane
Trimethyethoxylsilane
DEDMS
4.1
8.8
19.2
19.8
20.7
32.5
43.3
53.5
54.6
57.1
67.5
56.7
46.5
45.4
42.9
5.6
9.4
20.4
21.0
19.9
69.6
92.9
90.3
94.3
98.3
a
Reaction conditions: cat., 0.05 g; cyclohexene, 10 mmol; H2O2, 10 mmol; MeCN, 10 mL; temp., 333 K; time, 2 h. b 2-Cyclohexene-1-ol, 2-cyclohexene-
1-one, glycols.
12 A. Tuel, Zeolites, 1995, 15, 236.
effective way to obtain crystalline zeolites with enlarged pores
useful for fine chemical synthesis.
13 (a) P. Wu, T. Komatsu and T. Yashima, J. Phys. Chem., 1996, 100,
10316; (b) P. Wu, T. Komatsu and T. Yashima, J. Phys. Chem. B,
1998, 102, 9297.
14 M. Diaz-Cabanas, L. A. Villaescusa and M. A. Camblor, Chem.
Commun., 2000, 761.
Conclusions
15 Y. Kubota, Y. Koyama, T. Yamada, S. Inagaki and T. Tatsumi,
Chem. Commun., 2008, 6224.
16 P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, Chem. Lett., 2000,
774.
17 P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, J. Catal., 2001, 202,
245.
18 P. Wu and T. Tatsumi, Chem. Commun., 2001, 897.
19 F. Song, Y. Liu, H. Wu, M. He, P. Wu and T. Tatsumi, J. Catal.,
2006, 237, 359.
20 F. Song, Y. Liu, L. Wang, H. Zhang, M. He and P. Wu, Appl. Catal.,
A, 2007, 327, 22.
21 M. E. Leonowicz, J. A. Lawton and S. L. Lawton, Science, 1994, 264,
1910.
22 S. L. Lawton, M. E. Leonowicz and P. D. Partridge, Microporous
Mesoporous Mater., 1998, 23, 109.
23 L. Wang, Y. Liu, W. Xie, H. Wu, X. Li, M. He and P. Wu, J. Phys.
Chem. C, 2008, 112, 6132.
24 P. Wu, D. Nuntasri, J. Ruan, Y. Liu, M. He, W. Fan, O. Terasaki and
T. Tatsumi, J. Phys. Chem. B, 2004, 108, 9126.
25 L. Wang, Y. Wang, Y. Liu, L. Chen, S. Cheng, G. Gao, M. He and
P. Wu, Microporous Mesoporous Mater., 2008, 113, 435.
26 S. Kim, H. Ban and W. Ahn, Catal. Lett., 2007, 113, 160.
27 W. Fan, P. Wu, S. Namba and T. Tatsumi, Angew. Chem., Int. Ed.,
2004, 43, 236.
28 W. Fan, P. Wu, S. Namba and T. Tatsumi, J. Catal., 2006, 243,
183.
29 G. Juttu and R. Lobo, Microporous Mesoporous Mater., 2000, 40, 9.
30 J. Ruan, P. Wu, B. Slater and O. Terasaki, Angew. Chem., Int. Ed.,
2005, 44, 6719.
31 P. Wu, J. Ruan, L. Wang, L. Wu, Y. Wang, Y. Liu, W. Fan, M. He,
O. Terasaki and T. Tatsumi, J. Am. Chem. Soc., 2008, 130, 8178.
32 S. Inagaki and T. Tatsumi, Chem. Commun., 2009, 2583.
33 S. Inagaki, T. Yokoi, Y. Kubota and T. Tatsumi, Chem. Commun.,
2007, 5188.
The alkoxysilylating treatment of Ti-MWW lamellar precursor
leads to new crystalline titanosilicates having an interlayer
expanded structure in comparison with the conventional 3D
Ti-MWW. The expanded structure is formed as a result of the
incorporated Si species serving as pillars. The silylation process is
independent of Ti content in directly synthesized Ti-MWW
precursors, leading to IEZ-Ti-MWW catalysts with a wide range
of Ti content. Compared with 3D Ti-MWW, IEZ-Ti-MWW
contains much more open interlayer spaces, showing a signifi-
cantly improved catalytic activity in the liquid-phase epoxidation
of alkenes with large molecular dimensions. IEZ-Ti-MWW is
expected to open up green oxidation processes for synthesizing
large oxygenated fine chemicals. This study may offer a new
route for designing and preparing large-pore titanosilicate
catalysts.
Acknowledgements
We gratefully acknowledge the NSFC of China (20673038,
20873043), Science and Technology Commission of Shanghai
Municipality (08JC1408700, 09XD1401500, 07QA14017,
08QA1402700), 973 Program (2006CB202508), 863 Program
(2007AA03Z34), and Shanghai Leading Academic Discipline
Project (B409). Y.W. thanks the PhD Program Scholarship Fund
of ECNU 2008. We thank Dr Juanfang Ruan for measuring the
HRTEM images and helpful discussion.
34 J. Ruan, P. Wu, B. Slater, Z. Zhao, L. Wu and O. Terasaki, Chem.
Mater., 2009, 21, 2904.
References
35 P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, J. Phys. Chem. B,
2001, 105, 2897.
€
1 Peroxide-Chemie: Langkettige Alpha-Epoxide, Hollriegelskreuth,
Chapters 1–4, pp. 1–29, 1981.
36 S. L. Lawton, A. S. Fung, G. J. Kennedy, L. B. Alemany,
C. D. Chang, G. H. Hatzikos, D. N. Lissy, M. K. Rubin,
H.-K. C. Timken, S. Steuernagel and D. E. Woessner, J. Phys.
Chem., 1996, 100, 3788.
37 J. Joo, T. Hyeon and J. Hyeon-Lee, Chem. Commun., 2000, 1487.
38 K. Yamamoto, Y. Nohara, Y. Domon, Y. Takahashi, Y. Sakata,
2 T. Taramasso, G. Perego and B. Notari, US Pat. 1983, 441050.
3 M. G. Clerici, G. Bellussi and U. Romano, J. Catal., 1991, 129, 159.
4 G. Bellussi and M. S. Rigutto, Stud. Surf. Sci. Catal., 2001, 137, 911.
€
5 P. Ratnasamy, D. Srinivas and H. Knozinger, Adv. Catal., 2004, 48, 1.
6 B. Notari, Adv. Catal., 1996, 41, 253.
7 M. G. Clerici and P. Ingallina, J. Catal., 1993, 140, 71.
ꢀ
J. Plevert and T. Tatsumi, Chem. Mater., 2005, 17, 3913.
´
ꢀ
8 A. Corma, M. A. Camblor, P. Esteve, A. Martınez and J. Perez-
39 G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of
Silicates and Zeolites; John Wiley & Sons Ltd.: New York, 1987.
40 P. Wu and T. Tatsumi, J. Catal., 2003, 214, 317.
Pariente, J. Catal., 1994, 145, 151.
9 H. Ichihashi and H. Sato, Appl. Catal., A, 2001, 221, 359.
´
10 A. Corma, P. Esteve, A. Martınez and S. Valencia, J. Catal., 1995,
41 L. Wang, Y. Liu, W. Xie, H. Zhang, H. Wu, Y. Jiang, M. He and
P. Wu, J. Catal., 2007, 246, 205.
152, 18.
11 T. Tatsumi and N. Jappar, J. Phys. Chem., 1998, 102, 7126.
8602 | J. Mater. Chem., 2009, 19, 8594–8602
This journal is ª The Royal Society of Chemistry 2009