A. L. Braga et al. / Tetrahedron Letters 47 (2006) 7195–7198
7197
Table 2. Catalytic cleavage of diorganyl diselenides to unsymmetrical diorganyl selenides
Zn/ InBr3
RSeSeR
+
R'Br
R' SeR
DMF, 100 °C
Time (h)
Entry
R
Halide
InBr3 (mol %)
Yielda (%)
1
2
3
4
5
6
7
8
9
Ph
Ph
Ph
Ph
Ph
Ph
Bu
Bu
CH3CH2CH2CH2Br
CH3CH2CH2CH2I
CH3CH2CH2CH2Cl
CH3(CH2)3CH2Br
CH2=CHCH2Br
PhCH2Br
1
1
1
1
1
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
10
85
90
83
96
82
93
58
67
98
22
58
57
1
PhCH2Br
48
48
22
72
48
22
CH3(CH2)10CH2Br
CH3(CH2)10CH2Br
PhCH2Br
PhCH2Br
CH3(CH2)10CH2Br
Bu
10
11
12
PhCH2
PhCH2
PhCH2
2.5
10
10
a Yields refer to those of pure isolated products characterized by spectroscopic methods.
Acknowledgments
RSeSeR + Zn
The authors gratefully acknowledge CAPES, CNPq,
FAPERGS and DAAD for financial support. M.W.P.
also acknowledges DAAD for travel grants as part of
a PROBRAL-project.
RSeR'
[RSeZnSeR]
3
1
InX3
ZnX2
R'X
References and notes
RSeInX2
4
(RSe)2InX
1. (a) Krief, A.; Hevesi, L. Organoselenium Chemistry I;
Springer: Berlin, 1988; (b) Comasseto, J. V.; Ling, L. W.;
Petragnani, N.; Stefani, H. A. Synthesis 1997, 373; (c)
Organoselenium Chemistry: A Practical Approach; Back,
T. G., Ed.; Oxford University Press: Oxford, UK, 1999;
(d) Procter, D. J. J. Chem. Soc., Perkin Trans. 1 2000,
835.
2
2. (a) Braga, A. L.; Ludtke, D. S.; Vargas, F.; Braga, R. C.
¨
RSeR'
3
R'X
Synlett 2006, 1453; (b) Braga, A. L.; Vargas, F.; Sehnem,
J. A.; Braga, R. C. J. Org. Chem. 2005, 70, 9021; (c) Braga,
A. L.; Paixao, M. W.; Ludtke, D. S.; Silveira, C. C.;
˜
¨
Scheme 2. Assumed catalytic cycle.
Rodrigues, O. E. D. Org. Lett. 2003, 5, 3635; (d) Braga, A.
L.; Silva, S. J. N.; Ludtke, D. S.; Drekener, R. L.; Silveira,
¨
C. C.; Rocha, J. B. T.; Wessjohann, L. A. Tetrahedron
Lett. 2002, 43, 7329; (e) Braga, A. L.; Paixao, M. W.;
˜
improvements with regards to operational simplicity,
reaction times and high isolated yields of products.
Organic halides, such as unreactive chlorides, and aryl
or alkyl diselenides can be used for the coupling reaction
under mild conditions.
Marin, G. Synlett 2005, 1975; (f) Braga, A. L.; Ludtke, D.
¨
S.; Sehnem, J. A.; Alberto, E. E. Tetrahedron 2005, 61,
11664.
3. (a) Mugesh, G.; du Mont, W.-W.; Sies, H. Chem. Rev.
2001, 101, 2125; (b) Back, T. G.; Moussa, Z. J. Am. Chem.
Soc. 2003, 125, 13455; (c) Nogueira, C. W.; Zeni, G.;
Rocha, J. B. T. Chem. Rev. 2004, 104, 6255.
4. Stadman, T. C. Annu. Rev. Biochem. 1996, 65, 83.
5. Mukherjee, C.; Tiwari, P.; Misra, A. K. Tetrahedron Lett.
2006, 47, 441.
A typical experimental procedure is as follows: To a stir-
red solution of appropriate diselenide (0.5 mmol), zinc
powder (0.8 mmol, 0.0523 g), indium tribromide
(2.5 mol %) in DMF (3 mL), under an argon atmo-
sphere, was added the alkyl, allyl or benzyl bromide
(1.2 mmol) and the mixture heated up (100 ꢁC) for the
time indicated in the Table 2. After this time the reaction
mixture was cooled to room temperature, quenched with
water (10 mL) and extracted with ether (3 · 15 mL). The
combined ether extract was washed with brine, dried
(Na2SO4), and filtered through a plug of Celite. The sol-
vent was removed to leave the crude product, which was
purified by column chromatography over silica gel using
hexane as solvent.
6. (a) Benzing, W. C.; Conn, J. B.; Magee, J. V.; Sheehan, E.
J. J. Am. Chem. Soc. 1958, 80, 2657; (b) Gunther, W. H.
¨
H. J. Org. Chem. 1966, 31, 1202; (c) Nishiyama, Y.;
Tokunaga, K.; Sonoda, N. Org. Lett. 1999, 1, 1725; (d)
´
Bonaterra, M.; Martın, S. E.; Rossi, R. A. Tetrahedron
Lett. 2006, 47, 3511; (e) Ajiki, K.; Hirano, M.; Tanaka, K.
Org. Lett. 2005, 7, 4193; (f) Wang, L.; Wang, M.; Huang,
F. Synlett 2005, 2007; (g) Gujadhur, R. K.; Venkata-
raman, D. Tetrahedron Lett. 2003, 44, 81; (h) Sinha, P.;
Kundu, A.; Roy, S.; Prabhakar, S.; Vairamani, M.;
Sankar, A. R.; Kunwar, A. C. Organometallics 2001, 20,