EXPERIMENTAL
General Procedures. Column chromatography (CC): silica gel (200–300 mesh, 10–40 ꢅm; Qingdao Marine Chemical
Factory, Qingdao, P. R. China), C18 reverse-phase silica gel (60 mm; Merck), Sephadex LH-20 (Amersham Pharmacia Biotech,
Sweden). Thin-layer chromatography (TLC): silica gel GF254 (10–40 ꢅm; Qingdao Marine Chemical Factory, Qingdao,
P. R. China). MCI Gel CHP20P (75–150 ꢅm; Mitsubishi Kasei Chemical Industries), C18 reversed-phase silica gel (20–45 um;
Fuji Silysia Chemical Ltd.). All solvents were distilled before use. HPLC (anal. and prep.): Shimadzu model LC-8A on YMC-pack,
R & D ODS column (250 ꢆ 4.6 mm, 250 ꢆ 20 mm) and UV detector Shimadzu SPD-10AVP. Melting points: Tempo
melting-point apparatus, uncorrected. Optical rotations: JASCO-20C digital polarimeter. UV spectra: Hewlett-Packard-8452A
1
diode-array spectrophotometer. IR spectra: Perkin–Elmer 577 spectrometer, in cm–1. H and 13C NMR spectra: Bruker
AM-400 spectrometer, ꢄ in ppm, J in Hz. MS: VG AutoSpec-3000 mass spectrometer, in m/z. HR-ESI-MS: API QSTAR
Pulsar-1 mass spectrometer.
Plant Material and Extraction and Isolation. The fronds of C. japonica were collected in Yuanjiang, Yunnan
Province, P. R. China, in July 2010. A specimen (CJ20100701), identified by one of the authors (J. G. Chen), was deposited in
the Herbarium of the College of Biological Resources and Environment Science, Qujing Normal University, Qujing,
P. R. China. The dry fronds of C. japonica (1.0 kg) were extracted with 95% EtOH (3 ꢆ 5 L) for 24 h at r.t. After removal of
EtOH under reduced pressure, the aqueous brownish syrup (1 L) was suspended in H2O (500 mL) and then partitioned with
AcOEt to afford an AcOEt extract (35 g). The AcOEt-soluble extract was subjected to chromatography over SiO2 column, eluting
with gradient CHCl3–MeOH to afford six fractions, Frs.1-6. Fractions 3 (61 g) and 4 (6.3 g) were repeatedly purified by SiO2
column chromatography (Sephadex LH-20, RP-18) and semi-preparative HPLC to yield 1 (6.8 mg), 2 (7.1 mg), and 3 (7.9 mg).
1-O-[3-O-Acetyl-ꢀ-L-rhamnopyranosyl-(1ꢁ6)-ꢂ-D-glucopyranosyl]-3-hydroxycinnamaldehyde (1). White
20
amorphous powder; [ꢀ] –159.03ꢇ (c 0.003, MeOH). UV (MeOH, ꢈmax, nm) (log ꢉ): 205 (2.78). IR (KBr, ꢊmax, cm–1): 3450,
D
2940, 2870, 1685, 1460, 1390, 1027. 1H and 13C NMR data are shown in Table 1. FAB-MS (neg.): 513 [M – H]–; HR-ESI-MS:
m/z 513.1605 [M – H]–; calcd 513.1608.
1-O-[2,3-O-Diacetyl-ꢀ-L-rhamnopyranosyl-(1ꢁ6)-ꢂ-D-glucopyranosyl]-3-methoxycinnamaldehyde (2). White
20
amorphous powder; [ꢀ] –200.01ꢇ (c 0.025, MeOH). UV (MeOH, ꢈmax, nm) (log ꢉ): 205 (2.15). IR (KBr, ꢊmax, cm–1): 3450,
D
2938, 2876, 1685, 1455, 1380, 1020. 1H and 13C NMR data are shown in Table 1; FAB-MS (neg.): 569 [M – H]–; HR-ESI-MS:
m/z 569.1867 [M – H]–; calcd 569.1870.
1-O-[3-O-Acetyl-ꢀ-L-rhamnopyranosyl-(1ꢁ6)-ꢂ-D-glucopyranosyl]-4-allyl-2-methoxyphenol (3). White
20
amorphous powder; [ꢀ] –213.03ꢇ (c 0.004, MeOH). UV (MeOH, ꢈmax, nm) (log ꢉ): 204 (3.15). IR (KBr, ꢊmax, cm–1): 3350,
D
2942, 2873, 1700, 1664, 1461, 1389, 1094, 1027. 1H and 13C NMR data are shown in Table 1. FAB-MS (neg.): 513 [M – H]–;
HR-ESI-MS: m/z 513.1978 [M – H]–; calcd 513.1972.
ACKNOWLEDGMENT
The above research was made possible by a grant from the Key Projects in Scientific Research of Qujing Normal
University (2011ZD003).
REFERENCES
1.
2.
3.
4.
5.
A. M. Galal, E. Abdel-Sattar, F. El-Feraly, and J. S. Mossa, Phytochemistry, 48, 159 (1998).
R. Torrenegra, J. Robles, R. Waibel, M. Lowel, and H. Achenbach, Phytochemistry, 35, 195 (1994).
A. Urzua and L. Mendoza, Phytochemistry, 39, 1489 (1995).
F. Bohlmann and J. Jakupovic, Phytochemistry, 18, 1367 (1979).
U. C. Pandey, A. K. Shinghal, N. C. Barua, R. P. Sharma, J. N. Baruah, K. Watanabe, P. Kulanthaivel,
and W. Herz, Phytochemistry, 23, 391 (1984).
6.
7.
8.
M. A. Metwally and A. A. Dawidar, Pharmazie, 39, 575 (1984).
M. A. Metwally and A. M. Dawidar, Pharmazie, 42, 355 (1987).
C. Zdero, A. A. Ahmed, F. Bohlmann, and G. M. Mungai, Phytochemistry, 29, 3167 (1990).
784