C
K. Ishihara et al.
Letter
Synlett
Table 2 (continued)
In conclusion, we have developed a novel method for
the synthesis of 5-substituted 1H-tetrazole using DPPA.28,29
Various aldoximes were easily converted into the corre-
sponding 5-substituted 1H-tetrazoles. The advantages of
this method are (1) the replacement of toxic metals and ex-
plosive azide sources with DPPA, and (2) the synthetic pro-
cedure is very simple.
Entry Substrate (E/Z)a
Product
Yield (%)
90
N
OH
N
N
N
11
N
H
(3/7)
N
OH
O
O
N
N
N
12
13
92
83
N
H
Acknowledgment
(2/1)
This work was supported by JSPS Grant-in-Aid for Scientific Research
(C), 26450145, and Prof. Y. Uozumi’s JST-ACCEL program.
H
N
H
N
N
OH
N
N
N
N
H
(5/2)
Supporting Information
N
N
OH
Supporting information for this article is available online at
N
N
14
35
N
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
H
HN
HN
(4/1)
N
References and Notes
OH
N
N
N
complex
mixture
15
16
17
N
(1) (a) Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379. (b) McKie, H.
A.; Friedland, S.; Hof, F. Org. Lett. 2008, 10, 4653.
H
(6/4)
(2) (a) Chiu, A. T.; Dunica, J. V.; McCall, D. E.; Wong, P. C.; Price, W.
A. Jr.; Thoolen, M. J. M. C.; Carini, D. J.; Johnson, A. L.;
Timmermans, P. B. M. W. M. J. Pharmacol. Exp. Ther. 1989, 250,
867. (b) Buehlmayer, P.; Criscione, L.; Fuhrer, W.; Furet, P.; De
Gasparo, M.; Stutz, S.; Whitebread, S. J. Med. Chem. 1991, 34,
3105. (c) Smith, R. D.; Duncia, J. V.; Lee, R. J.; Christ, D. D.; Chiu,
A. T.; Carini, D. J.; Herblin, W. F.; Timmermans, P. B. M. W. M.;
Wexler, R. R. Methods Neurosci. 1993, 13, 258. (d) Ostrovskii, V.
A.; Trifonov, R. E.; Popova, E. A. Russ. Chem. Bull. 2012, 61, 768.
(3) (a) Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.;
Sanno, Y. J. Med. Chem. 1977, 20, 141. (b) Ford, R. E.; Knowles, P.;
Lunt, E.; Marshal, S. M.; Penrose, A. J.; Ramsden, C. A.; Summers,
A. J. H.; Walker, J. L.; Wrigth, D. E. J. Med. Chem. 1986, 29, 538.
(c) Peet, N. P.; Baugh, L. E.; Sunder, S.; Lewis, J. E.; Matthews, E.
H.; Olberding, E. L.; Shah, D. N. J. Med. Chem. 1986, 29, 2403.
(4) (a) Andrus, A.; Partridge, B.; Heck, J. V.; Christensen, B. G. Tetra-
hedron Lett. 1984, 25, 911. (b) Toney, J. H.; Fitzgerald, P.; Grover-
Sharma, N.; Olson, S. H.; May, W. J.; Sundelof, J. G.; Vanderwall,
D. E.; Cleary, K. A.; Grant, S. K.; Wu, J. K. Chem. Biol. 1998, 5, 185.
(5) Wittenberger, S. J. Org. Prep. Proced. Int. 1994, 26, 499.
(6) (a) Huisgen, R.; Sauer, J.; Sturn, H. J.; Markgraf, J. H. Chem. Ber.
1960, 93, 2106. (b) Gaponik, P. N.; Voitekhovich, S. V.;
Ivashkevich, O. A. Russ. Chem. Rev. 2006, 75, 507.
N
N
41 (71)b
32 (65)b
OH
N
N
N
N
H
(1/1)
N
OH
N
N
N
H
(1/1)
N
OH
OH
N
N
N
n-C6H13
29 (40)b
22 (33)b
n-C6H13
18
19
N
H
(3/10)
N
N
N
N
N
H
(3/1)
N
OH
N
N
N
20
trace
N
H
(1/0)
a Determined by 1H NMR spectroscopy.
b Reaction time was 48 h.
(7) (a) Koldobskii, G. L.; Ostrovskii, V. A. Usp. Khim. 1994, 63, 847.
(b) Ostrovskii, V. A.; Pevzner, M. S.; Kofmna, T. P.; Shcherbinin,
M. B.; Tselinskii, I. V. Targets Heterocycl. Syst. 1999, 3, 467.
(8) (a) Gawande, S. D.; Raihan, M. J.; Zanwar, M. R.; Kavala, V.;
Janreddy, D.; Kuo, C.; Chen, M.; Kuo, T.; Yao, C. Tetrahedron
2013, 69, 1841. (b) Yapuri, U.; Palle, S.; Gudaparthi, O.; Narahari,
S. R.; Rawat, D. K.; Mukkanti, K.; Vantikommu, J. Tetrahedron
Lett. 2013, 54, 4732. (c) Jin, T.; Kitahara, F.; Kamjio, S.;
Yamamoto, Y. Tetrahedron Lett. 2008, 49, 2824. (d) Sreedhar, B.;
Suresh Kumar, A.; Yada, D. Tetrahedron Lett. 2011, 52, 3565.
(9) (a) Bonnamour, J.; Bolm, C. Chem. Eur. J. 2009, 15, 4543.
(b) Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. Tetra-
hedron Lett. 2009, 50, 4435.
N
N
N
DPPA
DBU
O
OPh
N3
OH
R
N
P
R
N
OPh
O
OPh
OPh
–N3
O
R
R
N
P
O
N
H+ (work-up)
N
N
N
DBU
N
O
P
H
N
OPh
OPh
N
N
O
R
H
Scheme 1 Proposed reaction mechanism
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–D