Aziridines
FULL PAPER
the radical cations. The active space that was employed in the CASSCF
calculations is indicated in Table 1 where the results are listed. Level
shifts[55] had to be applied to eliminate intruder states in the CASPT2
runs for all excited states under consideration, but we checked carefully
that no artefacts were introduced by this technique. Under this condition,
the weight of the zero-order CASSCF wavefunction in the PT2 expansion
was between 0.7 and 0.72 for all states. All CASSCF/CASPT2 calcula-
tions were performed with the Molcas program.[56]
[24] P. OꢆNeill, S. Steenken, D. Schulte-Frohlinde, J. Phys. Chem. 1975,
79, 2773.
[25] T. Shida, W. H. Hamill, J. Chem. Phys. 1966, 44, 2369.
[26] E. Heckel, A. Henglein, Ber. Bunsenges. Phys. Chem. 1966, 70, 149.
[27] L. Dogliotti, E. Hayon, J. Phys. Chem. 1967, 71, 2511.
[28] B. Mꢁller, PhD Thesis, University of Fribourg, Fribourg (Switzer-
land), 2000.
[29] Interestingly, laser flash photolyis of 3b in a 1:1 mixture of acetoni-
trile and water gave also rise to a band at 430 nm (in contrast to the
spectra observed previously in pure acetonitrile or methanol), next
to those of the azomethine ylide at 500 nm and a 280 nm band that
was assigned to an iminium ion obtained by protonation of the azo-
methine ylide. Thus, it appears that in the presence of water aziri-
dine radical cations and their ring-opening products can also be
formed by flash photolysis (see C. Gaebert, C. Siegner, J. Mattay,
M. Toubarz, S. Steenken, Photochem. Photobiol. Sci. 2004, 3, 990).
[30] The bands at 480 and 500 nm persisted on radiolysis of oxygen-satu-
rated BuCl solutions, where the radical cations were not formed.
The species responsible for these bands were therefore not very sen-
sitive to molecular oxygen, in accord with their assignment to neu-
tral azomethine ylides.
For the diphenylaziridines, it was impossible to carry out CASSCF/
CASPT2 calculations so we resorted to the more economical time-de-
pendent response theory,[57] where the poles and the residues of the fre-
quency-dependent polarizability are calculated, whereby the former cor-
respond to vertical excitation energies and the latter to oscillator
strengths. We employed the density-functional based implementation of
this method (TD-DFT)[58] using again the B3LYP functional and the 6-
31G* basis set as described above.
[31] R. J. Lichter, K. Crimaldi, D. A. Baker, J. Org. Chem. 1982, 47,
3524.
Acknowledgement
[32] K. N. Houk, S. Searles, M. D. Rozeboom, S. E. Seyedrezai, J. Am.
Chem. Soc. 1982, 104, 3448.
[33] An intrinsic reaction coordinate calculation from the transition state
for ring opening of 5 leads to the exo–exo isomer of the triphenyla-
zomethine ylide radical cation which was, however easily converted
into the more stable exo–endo isomer.
Support provided by the Deutsche Forschungsgemeinschaft and the
Fonds der Chemischen Industrie is gratefully acknowledged. T.B. and
B.M are grateful for support by the Swiss National Science Foundation
(project No. 2000–067881.02). C.G. thanks the Studienstiftung des Deut-
schen Volkes for a scholarship.
[34] H. W. Heine, B. L. Kapur, C. S. Mitch, J. Am. Chem. Soc. 1954, 76,
1173.
[35] V. Franzen, H. E. Driesen, Chem. Ber. 1963, 96, 1881.
[36] D. Tanner, C. Birgersson, A. Gogoll, Tetrahedron 1994, 50, 9797.
[37] I. Okada, K. Ichimura, R. Sudo, Bull. Chem. Soc. Jpn. 1970, 43,
1185.
[38] N. B. Chapman, D. J. Triggle, J. Chem. Soc. 1963, 1385.
[39] J. A. Deyrup, C. L. Moyer, J. Org. Chem. 1969, 34, 175.
[40] A. Henglein, W. Schnabel, J. Wendenburg, Einfꢀhrung in die Strah-
lenchemie, Verlag Chemie, Weinheim 1969.
[41] I. G. Draganic, Z. D. Draganic, The Radiation Chemistry of Water,
Academic Press, New York, 1971.
[1] J. Backes in Methoden der Organischen Chemie Houben-Weyl,
Vol. E 16c (Ed.: D. Klamann), Thieme, Stuttgart, 1992, pp. 370–677.
[2] J. A. Deyrup in: Small Ring Heterocycles, Vol. Part 1 (Ed.: A. Hass-
ner), Wiley, New York, 1983, pp. 1–214.
[3] R. Huisgen, Angew. Chem. 1963, 75, 604; Angew. Chem. Engl. Int.
Ed. 1963, 2, 656.
[4] J. W. Lown, Rec. Chem. Prog. 1971, 32, 51.
[5] R. Huisgen in 1,3-Dipolar Cycloaddition Chemistry, Vol. 1 (Ed.: A.
Padwa), Wiley, New York, 1984, pp. 1–176.
[6] V. Caer, A. Laurent, E. Laurent, R. Tardevil, Z. Cebulska, R. Bart-
nik, Nouv. J. Chim. 1987, 11, 351.
[42] R. W. T. Spinks, R. J. Woods, An Introduction to Radiation Chemis-
try, Wiley, New York, 1990.
[7] T. Brigaud, E. Laurent, R. Tardevil, Z. Cebulska, R. Bartnik, J.
Chem. Res. Synop. 1994, 8, 330.
[43] J. H. Baxendale, M. A. Rodgers, Chem. Soc. Rev. 1978, 7, 235.
[44] Z. B. Alfassi, R. H. Schuler, J. Phys. Chem. 1985, 89, 3359.
[45] E. Bothe, D. J. Deeble, D. G. E. Lemaire, R. Rashid, M. N. Schuch-
mann, H.-P. Schuchmann, D. Schulte-Frohlinde, S. Steenken, C.
von Sonntag, Radiat. Phys. Chem. 1990, 36, 149.
[46] T. Shida, Electronic Absorption Spectra of Radical Ions, Elsevier,
Amsterdam, 1988.
[47] A. Grimison, G. A. Simpson, J. Phys. Chem. 1968, 72, 1776.
[48] C. Sandorfy, Can. J. Spectrosc. 1965, 10, 85.
[8] C. Gaebert, Diploma Thesis, Westfꢀlische Wilhelms-Universitꢀt,
Mꢁnster (Germany), 1994.
[9] C. Gaebert, PhD Thesis, Westfꢀlische Wilhelms-Universitꢀt, Mꢁn-
ster (Germany), 1997.
[10] C. Gaebert, J. Mattay, J. Inf. Record. 1996, 23, 3.
[11] C. Gaebert, J. Mattay, Tetrahedron 1997, 53, 14297.
[12] C. Gaebert, C. Siegner, J. Mattay, M. Toubartz, S. Steenken, J.
Chem. Soc. Perkin Trans. 2 1998, 2735.
[13] C. Siegner, C. Gaebert, J. Mattay, S. Steenken, J. Inf. Record. 1998,
24, 253.
[49] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
[50] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[51] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pommelli, C. Adamo, S. Clifford, J.
Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslow-
ski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gon-
zales, M. Head-Gordon, E. S. Repogle, J. A. Pople, Gaussian, Inc.,
Pittsburgh, PA, 1998.
[14] J. L. Holmes, J. K. Terlouw, Can. J. Chem. 1976, 54, 1007.
[15] A. Maquestiau, Y. van Haverbeke, R. Flammang, A. Menu, Bull.
Soc. Chim. Belg. 1979, 88, 53.
[16] M. H. Lien, A. C. Hopkinson, Can. J. Chem. 1984, 62, 922.
[17] A. P. Schaap, G. Prasad, S. D. Gagnon, Tetrahedron Lett. 1983, 24,
3047.
[18] A. P. Schaap, S. Siddiqui, G. Prasad, E. Palomino, L. Lopez, J. Pho-
tochem. 1984, 25, 167.
[19] A. P. Schaap, G. Prasad, S. Siddiqui, Tetrahedron Lett. 1984, 25,
3035.
[20] X.-Z. Qin, F. Williams, J. Phys. Chem. 1986, 90, 2292.
[21] P. OꢆNeill, D. Schulte-Frohlinde, J. Chem. Soc. Chem. Commun.
1975, 387.
[22] H. Christensen, Int. J. Radiat. Phys. Chem. 1972, 4, 311–333.
[23] H. Christensen, K. Sehested, E. J. Hart, J. Phys. Chem. 1973, 77,
983.
[52] B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 1993, 98,
5612.
Chem. Eur. J. 2005, 11, 1294 – 1304
ꢃ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1303