the analogy can be made between the active sites in this work and
those of many oxidation enzymes, in which a ‘metal cofactor’
(e.g. 1) is embedded in a coordinating scaffold (e.g. S–CA) to
create a new, more productive catalyst (e.g. 20) whose reactivity is
sensitive to subtle changes to the scaffold structure.
The authors thank Evonik Degussa for Aeroperl fumed
SiO2 and Dow Chemical and the Dow Methane Challenge, the
Camille and Henry Dreyfus New Faculty Awards Program,
and Northwestern University for financial support.
Notes and references
1 (a) R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidations of
Organic Compounds, Academic Press, New York, 1981;
(b) E. M. McGarrigle and D. G. Gilheany, Chem. Rev., 2005,
105, 1563–1602; (c) D. Mandelli, K. B. Voitiski, U. Schuchardt and
G. B. Shul’pin, Chem. Nat. Compd., 2002, 38, 243–245.
2 (a) K. Wieghardt, U. Bossek, B. Nuber, J. Weiss, J. Bonvoisin,
M. Corbella, S. E. Vitols and J. J. Girerd, J. Am. Chem. Soc., 1988,
110, 7398–7411; (b) R. Hage, J. E. Iburg, J. Kerschner, J. H. Koek,
E. L. M. Lempers, R. J. Martens, U. S. Racheria, S. W. Russell,
T. Swarthoff, M. R. P. van Vliet, J. B. Warnaar, L. V. D. Wolf and
B. Krijnen, Nature, 1994, 369, 637–639; (c) V. C. Quee-Smith,
L. DelPizzo, S. H. Jureller, J. L. Kerschner and R. Hage, Inorg.
Chem., 1996, 35, 6461–6465; (d) D. De Vos and T. Bein, Chem.
Commun., 1996, 917–918.
3 (a) D. E. De Vos, B. F. Sels, M. Reynaers, Y. V. Subba Rao and
P. A. Jacobs, Tetrahedron Lett., 1998, 39, 3221–3224; (b) J. W. De
Boer, P. L. Alsters, A. Meetsma, R. Hage, W. R. Browne and
B. L. Feringa, Dalton Trans., 2008, 6283–6295; (c) H. Killic,
W. Adam and P. L. Alsters, J. Org. Chem., 2009, 74, 1135–1140.
4 (a) D. E. De Vos, S. D. Wildeman, B. F. Sels, P. J. Grobet and
P. A. Jacobs, Angew. Chem., Int. Ed., 1999, 38, 980–983;
(b) D. E. De Vos and P. A. Jacobs, Catal. Today, 2000, 57,
105–114; (c) Y. V. S. Rao, D. E. De Vos, T. Bein and
P. A. Jacobs, Chem. Commun., 1997, 355–356.
5 Some relevant reviews are: (a) A. Choplin and F. Quignard, Coord.
Chem. Rev., 1998, 180, 1679–1702; (b) M. Dusi, T. Mallat and
A. Baiker, Catal. Rev. Sci. Eng., 2000, 42, 213–278; (c) D. E. De
Vos, M. Dams, B. F. Sels and P. A. Jacobs, Chem. Rev., 2002, 102,
3615–3640; (d) M. H. Valkenberg and W. F. Holderich, Catal. Rev.
Sci. Eng., 2002, 44, 321–374; (e) A. Corma, Catal. Rev. Sci. Eng.,
2004, 46, 369–417; (f) R. Augustine, S. Tanielyan, S. Anderson,
Y. Gao, P. Goel, N. Mahata, I. Nair, C. Reyes, H. Yang and
A. Zsigmond, Methodologies in Asymmetric Catalysis, ACS
Symp. Ser., 2004, 880, 15–28; (g) J. M. Notestein and A. Katz,
Chem.–Eur. J., 2006, 12, 3954–3965.
Fig. 1 Effect of CA to Mn molar ratio and CA surface density of S–CA
on total TON to epoxide and cis-diol at a constant 2.7 ꢄ 0.3 ꢂ 10ꢁ3 mmol
1 under batch reactor conditions. (Inset) Effect of mole fraction Mn vs. CA
on H2O2 utilization at constant 2.9 ꢄ 0.4 ꢂ 10ꢁ3 mmol surface CA under
batch reactor conditions. Lines are includedꢁa1s a guide to the eye. D 0.06,
B 0.14, J 0.25, and & 0.51 mmolCA(gSiO
) .
2
surface species formed under reaction conditions are more
consistent with the former. In the absence of oxidant, solution
and diffuse reflectance UV-visible spectra show 1 disappearing
from MeCN–H2O solution (see ESIw) and adsorbing without
change onto S–CA (Fig. 2c and d). In contrast, with H2O2
present, 1 disappears more rapidly from solution and the solid-
supported species shows a characteristic shoulder at B320 nm,
virtually identical to 2 in solution (Fig. 2a and b). Diffuse
reflectance UV-visible spectra of A–CA with adsorbed 1 are
structureless indicating the absence of a well-defined Mn
complex (see ESIw), in line with the lack of catalyst activity.
In conclusion, carboxylic acids grafted onto SiO2 (e.g. S–CA)
are an especially effective co-catalyst for selective oxidation with
tmtacn manganese(IV) dimer 1. The oxidant-dependant reaction
between 1 and the supported CA synthesizes a heterogeneous
catalyst (20) under reaction conditions, and this heterogeneous
catalyst has >10ꢂ productivity for cyclooctene oxidation vs.
H2O2 decomposition than for the same ratios of analogous
homogeneous co-catalyst valeric acid. Many non-heme oxidation
catalysts require carboxylic acid co-catalysts or additives for
selective oxidation of various substrates,14 and this communica-
tion demonstrates a generalizable route to the synthesis of
molecularly well-defined, solid-supported versions of this type
of catalyst that avoids synthetic modification of the ligand, which
can complicate catalyst development and understanding. Finally,
6 R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt,
Acc. Chem. Res., 1998, 31, 485–493.
7 (a) G. H. Searle and R. J. Geue, Aust. J. Chem., 1984, 37, 959–970;
(b) S. A. Madison and D. J. Batal, Lever Brothers Co., 1994,
US Pat., 5 284 944; (c) J. H. Koek, S. W. Russell, L. van der Wolf,
R. Hage, J. B. Warnaar, A. L. Spek, J. Kerschner and L. DelPizzo,
J. Chem. Soc., Dalton Trans., 1996, 353–362.
8 J. C. McKeen, Y. S. Yan and M. E. Davis, Chem. Mater., 2008, 20,
5122–5124.
9 (a) A. J. Wu, J. E. Penner-Hahn and V. L. Pecoraro, Chem. Rev.,
2004, 104, 903–938; (b) A. E. M. Boelrijk, S. V. Khangulov and
G. C. Dismoukes, Inorg. Chem., 2000, 39, 3009–3019.
ꢁ1
10 A typical surface coverage of 0.60 mmolCA(gSiO
)
is equivalent to
one group per 0.85 nm in any direction, or 2.7 m2mol cmꢁ3 = 2.7 M.
In the batch reactors, 500 equivalents of valeric acid is 65 mM.
11 A. Mulder, T. Auletta, A. Sartori, S. Del Ciotto, A. Casnati,
R. Ungaro, J. Huskens and D. N. Reinhoudt, J. Am. Chem. Soc.,
2004, 126, 6627–6636.
12 J. M. Notestein, A. Solovyov, L. R. Andrini, F. G. Requejo,
A. Katz and E. Iglesia, J. Am. Chem. Soc., 2007, 129, 15585–15595.
13 (a) T. Maschmeyer, R. D. Oldroyd, G. Sankar, J. M. Thomas,
I. J. Shannon, J. A. Klepetko, A. F. Masters, J. K. Beattie and
C. R. A. Catlow, Angew. Chem., Int. Ed. Engl., 1997, 36,
1639–1642; (b) A. J. Butterworth, J. H. Clark, P. H. Walton and
S. J. Barlow, Chem. Commun., 1996, 1859–1860.
Fig. 2 Normalized UV-visible spectra of (a) 2 in MeCN, (b) 20 via
self-catalyzed grafting of 1 on S–CA from MeCN–H2O2, (c) 1 in
MeCN, and (d) 1 adsorbed on S–CA from MeCN–H2O.
14 L. Que and W. B. Tolman, Nature, 2008, 455, 333–340.
ꢃc
This journal is The Royal Society of Chemistry 2010
1642 | Chem. Commun., 2010, 46, 1640–1642