Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Ronaldson, V. E.; Slawin, A. M. Z.; Viterisi, A.; Walker, D. B. J.
Zhang, J. J. Am. Chem. Soc. 2002, 124, 13097−13105. (c) Watanabe,
M.; Ikagawa, A.; Wang, H.; Murata, K.; Ikariya, T. J. Am. Chem.
Soc. 2004, 126, 11148−11149.
Am. Chem. Soc. 2007, 129, 11950–11963. (e) Berná, J.; Crowley, J.
D.; Goldup, S. M.; Hänni, K. D.; Lee, A.-L.; Leigh, D. A. Angew.
Chem. Int. Ed. 2007, 46, 5709–5713. (f) Goldup, S. M.; Leigh, D.
A.; Lusby, P. J.; McBurney, R. T.; Slawin, A. M. Z. Angew. Chem.
Int. Ed. 2008, 47, 3381–3384. (g) Berná, J.; Goldup, S. M.; Lee, A.-
L.; Leigh, D. A.; Symes, M. D.; Teobaldi, G.; Zerbetto, F. Angew.
Chem. Int. Ed. 2008, 47, 4392–4396. (h) Sato, Y.; Yamasaki, R.;
Saito, S. Angew. Chem. Int. Ed. 2009, 48, 504–507. (i) Goldup, S.
M.; Leigh, D. A.; Long, T.; McGonigal, P. R.; Symes, M. D.; Wu, J.
J. Am. Chem. Soc. 2009, 131, 15924–15929. (j) Goldup, S. M.; Leigh,
D. A.; McGonigal, P. R.; Ronaldson, V. E.; Slawin, A. M. Z. J. Am.
Chem. Soc. 2010, 132, 315–320. (k) Crowley, J. D.; Hänni, K. D.;
Leigh, D. A.; Slawin, A. M. Z. J. Am. Chem. Soc. 2010, 132, 5309–
5314. (l) Goldup, S. M.; Leigh, D. A.; McBurney, R. T.; McGonigal,
P. R.; Plant, A. Chem. Sci. 2010, 1, 383–386. (m) Lahlali, H.; Jobe,
K.; Watkinson, M.; Goldup, S. M. Angew. Chem. Int. Ed. 2011, 50,
(8) (a) Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958–
9959. (b) Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc.
2007, 129, 11583–11592.
(9) The ability of 12 to confer enantioselectivity in the conjugate
addition increases at reduced ligand stoichiometry (e.g. 1:1) and
concentration. Rotaxane 7 is much less sensitive to changes in
these reaction parameters.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4
151–4155. (n) Cheng, H. M.; Leigh, D. A.; Maffei, F.; McGonigal,
P. R.; Slawin, A. M. Z.; Wu, J. J. Am. Chem. Soc. 2011, 133, 12298–
2303. (o) Langton, M. J.; Matichak, J. D.; Thompson, A. L.; An-
1
derson, H. L. Chem. Sci. 2011, 2, 1897–1901. (q) Lewandowski, B.;
De Bo, G.; Ward, J. W.; Papmeyer, M.; Kuschel, S.; Aldegunde,
M. J.; Gramlich, P. M. E.; Heckmann, D.; Goldup, S. M.; D’Souza,
D. M.; Fernandes A. E.; Leigh, D. A. Science 2013, 339, 189−193. (r)
Winn, J.; Pinczewska, A.; Goldup, S. M. J. Am. Chem. Soc. 2013,
1
35, 13318–13321. (s) De Bo, G.; Kuschel, S.; Leigh, D. A.; Lewan-
dowski, B.; Papmeyer M.; Ward, J. W. J Am Chem Soc. 2014, 136,
811−5814. (t) Bordoli, R. J.; Goldup, S. M. J. Am. Chem. Soc. 2014,
36, 4817–4820. (u) Barat, R.; Legigan, T.; Tranoy-Opalinski, I.;
5
1
Renoux, B.; Péraudeau, E.; Clarhaut, J.; Poinot, P.; Fernandes, A.
E.; Aucagne, V.; Leigh, D. A.; Papot, S. Chem. Sci. 2015, 6, 2608–
2613. (v) Neal, E. A.; Goldup, S. M. Chem. Sci. 2015, 6, 2398–2404.
(w) Franz, M.; Januszewski, J. A.; Wendinger, D.; Neiss, C.;
Movsisyan, L. D.; Hampel, F.; Anderson, H. L.; Görling, A.;
Tykwinski, R. R. Angew. Chem. Int. Ed. 2015, 54, 6645–6649.
3) The available metal coordination site in active template rotax-
anes has been used to promote further threading to form higher
(
2j,n
2d,f
2g,k
order rotaxanes, or to control the dynamics, and position
of the macrocycle within molecular shuttles and switches.
(4) Chiral rotaxanes have been employed as organocatalysts [(a)
Tachibana, Y.; Kihara, N.; Takata, T. J. Am. Chem. Soc. 2004, 126,
3
438−3439. (b) Tachibana, Y.; Kihara, N.; Nakazono, K.; Takata,
T. Phosphorus, Sulfur, Silicon Relat. Elem. 2010, 185, 1182−1205; (c)
Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.; Nuss-
baumer, A. L. J. Am. Chem. Soc. 2014, 136, 4905−4908] and chiral
pseudo-rotaxanes have been used as ligands in Rhodium cataly-
sis [(d) Hattori, G.; Hori, T.; Miyake, Y.; Nishibayashi, Y. J. Am.
Chem. Soc. 2007, 129, 12930−12931. (e) Li, Y.; Feng, Y.; He, Y.-M.;
Chen, F.; Pan, J.; Fan, Q.-H. Tetrahedron Lett. 2008, 49,
2878−2881]. For other rotaxane catalysts, see: (f) Berná, J.; Alaja-
rín, M.; Orenes, R.-A. J. Am. Chem. Soc. 2010, 132, 10741–10747.
(g) Suzaki, Y.; Shimada, K.; Chihara, E.; Saito, T.; Tsuchido, Y.;
Osakada, K. Org. Lett. 2011, 13, 3774–3777. (h) Blanco, V.; Car-
lone, A.; Hänni, K. D.; Leigh, D. A.; Lewandowski, B. Angew.
Chem. Int. Ed. 2012, 51, 5166–5169. (i) Blanco, V.; Leigh, D. A.;
Lewandowska, U.; Lewandowski, B.; Marcos, V. J. Am. Chem.
Soc. 2014, 136, 15775–15780. (j) Leigh, D. A.; Marcos, V.; Wilson,
M. R. ACS Catal. 2014, 4, 4490–4497. (k) Beswick, J.; Blanco, V.;
De Bo, G.; Leigh, D. A.; Lewandowska, U.; Lewandowski B.;
Mishiro, K. Chem. Sci. 2015, 6, 140–143.
(
(
5) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691–1692.
6) (a) Klapars, A.; Huang X.; Buchwald S. L. J. Am. Chem. Soc. 2002,
1
24, 7421–7428. (b) Strieter, E. R.; Bhayana, B.; Buchwald, S. L. J.
Am. Chem. Soc. 2009, 131, 78–88.
(
7) For examples of metal-catalyzed conjugate additions, see: (a) Ji,
J.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger, S. J.; Mor-
ton, H. E. J. Am. Chem. Soc. 1999, 121, 10215−10216. (b) Barnes, D.
M.; Ji, J.; Fickes, M. G.; Fitzgerald, M. A.; King, S. A.; Morton, H.
E.; Plagge, F. A.; Preskill, M.; Wagaw, S. H.; Wittenberger, S. J.;
ACS Paragon Plus Environment