8166
unit and 2. This result mirrors the solution-phase studies and shows that one-electron oxidation
causes very fast (compared with the scan rate used, 100–1000 mV s−1) reversible dethreading of
the complex, and successive one-electron reduction causes a very fast re-formation.7 The
remarkably similar changes in the electrochemical properties of SAM’s of 3, following complex-
ation with 2, clearly illustrates that electrochemically controlled host–guest complexation, which
we have confirmed in solution for 2 and 3, can also be observed in the solid/liquid interface of
a SAM.
In summary, we have shown that we can exploit the multi-stage redox properties of SAM’s
of 3 to produce electrochemically controlled host–guest complexes with the tetracationic
cyclophane 2. Further work is underway in our group to maximise the interaction between the
immobilised TTF unit and 2, and exploit the tuneability of TTF moieties oxidation potentials
to create addressable SAM’s.
Acknowledgements
G.C. gratefully acknowledges the EPSRC and the Royal Society of Chemistry for supporting
this work. We thank Dr. Gunter Mattersteig for providing a sample of 2.
References
1. Goldenberg, L. M.; Bryce, M. R.; Petty, M. C. J. Mater. Chem. 1999, 9, 1957.
2. (a) Hansen, T. K.; Jorgensen, T.; Stein, P. C.; Becher, J. J. Org. Chem. 1992, 57, 6403; (b) Yip, C.; Ward, M. D.
Langmuir 1994, 10, 549; (c) Moore, A. J.; Goldenberg, L. M.; Bryce, M. R.; Petty, M. C.; Monkman, A. P.;
Morenco, C.; Yarwood, J.; Joyce, M. J.; Port, S. N. Adv. Mater. 1998, 10, 395. (d) Liu, H.; Liu, S.; Echegoyen,
L. Chem. Commun. 1999, 1493. (e) Fibbioli, M.; Bandyopadhyay, K.; Liu, S.-G.; Echegoyen, L.; Enger, O.;
Diederich, F.; Buhlmann, P.; Pretsch, E. Chem. Commun. 2000, 339. (f) Liu, S.-G.; Liu, H.; Bandyopadhyay, K.;
Gao, Z.; Echegoyen, L. J. Org. Chem. 2000, 65, 3292.
3. (a) Philp, D.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Chem. Commun. 1991, 1584; (b)
Devonport, W.; Blower, M. A.; Bryce, M. R.; Goldenberg, L. M. J. Org. Chem. 1997, 62, 885. (c). Ashton, P. R;
Balzani, V.; Becher, J.; Credi, A.; Fyfe, M. C. T.; Mattersteig, G.; Menzer, S.; Nielsen, M. B.; Raymo, F. M.;
Stoddard, J. F.; Venturi, M.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 3951.
4. Garin, J.; Orduna, J.; Uruiel, S.; Moore, A. J.; Bryce, M. R.; Wegner, S.; Yufit, D. S.; Howard, J. A. K. Synthesis
1994, 489.
5. Selected data for 3: isolated as a yellow wax in 86% yield. lH (CD3CN/TMS) 6.51 (s, 1H), 6.47 (s, 2H), 4.83 (s,
2H), 3.56 (m, 1H), 3.16 (m, 2H), 2.42 (m, 1H), 2.35 (t, 2H), 1.94 (m, 1H), 1.63 (m, 4H), 1.46 (m, 2H); MS (EI)
m/z=422; exact mass calc. for C15H18S6O2: 421.9631. Found: 421.9627.
6. All electrochemical experiments were performed using a BAS-100W system. Electrolyte solutions were prepared
from recrystallised Bu4NClO4 using spectroscopic grade MeCN and purged with nitrogen prior to use. A three
electrode configuration was used with an Ag/AgCl reference electrode and a platinum wire as the counter
electrode.
7. Asakawa, M.; Ashton, P. R.; Balzani, V.; Credi, A.; Mattersteig, G.; Matthews, O. A.; Montalti, M.; Spencer, N.;
Stoddart, J. F.; Venturi, M. Chem. Eur. J. 1997, 3, 1992.
.