Journal of the American Chemical Society
Page 4 of 6
erties affect transport. The CPN in this work complements
the already existing library of hydrophobic CPNs, bringing
the field one step closer to achieving organic nanotubes with
variable and dynamic interiors for better molecular recogni-
tion and transport.
tive transport of alkali metal ions in metal organic frameworks
1
2
3
4
5
6
7
8
with subnanometer pores. Science Advances 2018, 4.
(14) Semino, R.; Moreton, J. C.; Ramsahye, N. A.; Cohen, S. M.;
Maurin, G. Understanding the origins of metalorganic frame-
work/polymer compatibility. Chemical Science 2018, 9, 315–
324.
(15) Fuertes, A.; Ozores, H. L.; Amorn, M.; Granja, J. R. Self-
assembling Venturi-like peptide nanotubes. Nanoscale 2017, 9,
748–753.
(16) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.;
Khazanovich, N. Self-assembling organic nanotubes based on a
cyclic peptide architecture. Nature 1993, 366, 324–327.
(17) Xu, T.; Zhao, N.; Ren, F.; Hourani, R.; Lee, M. T.; Shu, J. Y.;
Mao, S.; Helms, B. A. Subnanometer Porous Thin Films by the
Co-assembly of Nanotube Subunits and Block Copolymers. ACS
Nano 2011, 5, 1376–1384.
Acknowledgement
This research was supported through the Center for Gas Sep-
arations Relevant to Clean Energy Technologies, an Energy
Frontier Research Center funded by the US Department of
Energy, Office of Science, Office of Basic Energy Sciences un-
der Award DE-SC0001015. Portions of the work -including
dipeptide 6 synthesis, CP synthesis, and tandem deprotec-
tion and Bzim cyclization- were carried out at the Molecular
Foundry, which is supported by the Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of En-
ergy under Contract No. DE-AC02-05CH11231. We also
acknowledge the support of the Office of Naval Research
(Grant # N00014-13-1-0760) and the National Science Foun-
dation’s Designing Materials to Revolutionize and Engineer
our Future (DMREF) Award CBET-1234305.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) Khazanovich, N.; Granja, J. R.; McRee, D. E.; Milligan, R. A.;
Ghadiri, M. R. Nanoscale Tubular Ensembles with Specified In-
ternal Diameters. Design of a Self-Assembled Nanotube with a
˚
13-A Pore. Journal of the American Chemical Society 1994,
116, 6011–6012.
(19) Granja, J. R.; Ghadiri, M. R. Channel-Mediated Transport of
Glucose across Lipid Bilayers. Journal of the American Chem-
ical Society 1994, 116, 10785–10786.
(20) Hourani, R.; Zhang, C.; van, d. W.; Ruiz, L.; Li, C.; Keten, S.;
Helms, B. A.; Xu, T. Processable Cyclic Peptide Nanotubes with
Tunable Interiors. Journal of the American Chemical Society
2011, 133, 15296–15299.
(21) Fernandez-Lopez, S.; Kim, H.-S.; Choi, E. C.; Delgado, M.;
Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Wein-
berger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Antibacte-
rial agents based on the cyclic d,l--peptide architecture. Nature
2001, 412, 452.
(22) Ghadiri, M. R.; Granja, J. R.; Buehler, L. K. Artificial trans-
membrane ion channels from self-assembling peptide nanotubes.
Nature 1994, 369, 301–304.
(23) Danial, M.; Perrier, S.; Jolliffe, K. A. Effect of the amino acid
composition of cyclic peptides on their self-assembly in lipid
bilayers. Organic & Biomolecular Chemistry 2015, 13, 2464–
2473.
(24) Rodr´ıguez-V´azquez, N.; Amor´ın, M.; Granja, J. R. Recent ad-
vances in controlling the internal and external properties of
self-assembling cyclic peptide nanotubes and dimers. Organic
& Biomolecular Chemistry 2017, 15, 4490–4505.
(25) Kubik, S. Large Increase in Cation Binding Affinity of Artificial
Cyclopeptide Receptors by an Allosteric Effect. Journal of the
American Chemical Society 1999, 121, 5846–5855.
(26) Amor´ın, M.; Castedo, L.; Granja, J. R. New Cyclic Peptide As-
semblies with Hydrophobic Cavities: The Structural and Ther-
modynamic Basis of a New Class of Peptide Nanotubes. Journal
of the American Chemical Society 2003, 125, 2844–2845.
(27) Wang, D.; Guo, L.; Zhang, J.; Roeske, R. W.; Jones, L. R.;
Chen, Z.; Pritchard, C. Artificial ion channels formed by a syn-
thetic cyclic peptide. The Journal of Peptide Research 2001,
57, 301–306.
Supporting Information Avail-
able
Experimental procedures and characterization data for all
new compounds.
References
(1) Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.;
Baker, R. W.; Freeman, B. D. 50th Anniversary Perspective:
Polymers and Mixed Matrix Membranes for Gas and Vapor
Separation: A Review and Prospective Opportunities. Macro-
molecules 2017, 50, 7809–7843.
(2) Gin, D. L.; Noble, R. D. Designing the Next Generation of
Chemical Separation Membranes. Science; Science 2011, 332,
674.
(3) Sianipar, M.; Kim, S. H.; Khoiruddin,; Iskandar, F.; Wen-
ten, I. G. Functionalized carbon nanotube (CNT) membrane:
progress and challenges. RSC Adv. 2017, 7, 51175–51198.
(4) Murata, K.; Mitsuoka, K.; Hirai, T.; Walz, T.; Agre, P.; Hey-
mann, J. B.; Engel, A.; Fujiyoshi, Y. Structural determinants of
water permeation through aquaporin-1. Nature 2000, 407, 599.
(5) Leiding, T.; Wang, J.; Martinsson, J.; DeGrado, W. F.;
rskld, S. P. Proton and cation transport activity of the M2 pro-
ton channel from influenza A virus. Proceedings of the National
Academy of Sciences 2010, 107, 15409.
(6) Holt, J. K.; Park, H. G.; Wang, Y.; Stadermann, M.;
Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O.
Fast Mass Transport Through Sub-2-Nanometer Carbon Nan-
otubes. Science; Science 2006, 312, 1034.
(7) Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.;
Bachas, L. G. Aligned Multiwalled Carbon Nanotube Mem-
branes. Science; Science 2004, 303, 62.
(8) Tunuguntla, R. H.; Allen, F. I.; Kim, K.; Belliveau, A.; Noy, A.
Ultrafast proton transport in sub-1-nm diameter carbon nan-
otube porins. Nat Nano 2016, 11, 639–644.
(9) Tunuguntla, R. H.; Henley, R. Y.; Yao, Y.-C.; Pham, T. A.;
Wanunu, M.; Noy, A. Enhanced water permeability and tun-
able ion selectivity in subnanometer carbon nanotube porins.
Science 2017, 357, 792–796.
(10) Shen, Y.-x.; Si, W.; Erbakan, M.; Decker, K.; De Zorzi, R.;
Saboe, P. O.; Kang, Y. J.; Majd, S.; Butler, P. J.; Walz, T.; Ak-
simentiev, A.; Hou, J.-l.; Kumar, M. Highly permeable artificial
water channels that can self-assemble into two-dimensional ar-
rays. Proceedings of the National Academy of Sciences 2015,
112, 9810–9815.
(11) Hatakeyama, E. S.; Gabriel, C. J.; Wiesenauer, B. R.;
Lohr, J. L.; Zhou, M.; Noble, R. D.; Gin, D. L. Water filtra-
tion performance of a lyotropic liquid crystal polymer membrane
with uniform, sub-1-nm pores. Journal of Membrane Science
2011, 366, 62 – 72.
(12) Wiesenauer, B. R.; Gin, D. L. Nanoporous polymer materials
based on self-organized, bicontinuous cubic lyotropic liquid crys-
tal assemblies and their applications. Polymer Journal 2012,
44, 461.
(13) Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.;
Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. Ultrafast selec-
(28) Reiriz, C.; Amor´ın, M.; Garcia-Fandino, R.; Castedo, L.;
Granja, J. R. α,γ-Cyclic peptide ensembles with a hydroxylated
cavity. Organic
4361.
& Biomolecular Chemistry 2009, 7, 4358–
(29) Rodr´ıguez-V´azquez, N.; Garcia-Fandino, R.; Amor´ın, M.;
Granja, J. R. Self-assembling α,γ-cyclic peptides that generate
cavities with tunable properties. Chemical Science; Chem.Sci.
2016, 7, 183–187.
(30) Rodr´ıguez-V´azquez, N.; Amor´ın, M.; Alfonso, I.; Granja, J. R.
Anion Recognition and Induced Self-Assembly of an α,γ-Cyclic
Peptide To Form Spherical Clusters. Angewandte Chemie In-
ternational Edition 2016, 55, 4504–4508.
(31) Guerra, A.; Brea, R. J.; Amor´ın, M.; Castedo, L.; Granja, J. R.
Self-assembling properties of all γ-cyclic peptides containing
sugar amino acid residues. Organic & Biomolecular Chemistry
2012, 10, 8762–8766.
(32) Burade, S. S.; Saha, T.; Bhuma, N.; Kumbhar, N.; Kot-
male, A.; Rajamohanan, P. R.; Gonnade, R. G.; Talukdar, P.;
Dhavale, D. D. Self-Assembly of Fluorinated Sugar Amino Acid
Derived α, γ-Cyclic Peptides into Transmembrane Anion Trans-
port. Organic Letters 2017, 19, 5948–5951.
(33) Kim, H. S.; Hartgerink, J. D.; Ghadiri, M. R. Oriented Self-
Assembly of Cyclic Peptide Nanotubes in Lipid Membranes.
Journal of the American Chemical Society 1998, 120, 4417–
4424.
(34) Miyazawa, T.; Blout, E. R. The Infrared Spectra of Polypeptides
in Various Conformations: Amide I and II Bands1. Journal of
the American Chemical Society 1961, 83, 712–719.
(35) Haris, P. I.; Chapman, D. The conformational analysis of pep-
tides using fourier transform IR spectroscopy. Biopolymers
1995, 37, 251–263.
(36) Liu, K.; Xing, R.; Chen, C.; Shen, G.; Yan, L.; Zou, Q.; Ma, G.;
Mhwald, H.; Yan, X. Peptide-Induced Hierarchical Long-Range
Order and Photocatalytic Activity of Porphyrin Assemblies.
Angewandte Chemie International Edition 2015, 54, 500–505.
(37) Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: ther-
modynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–
5604.
(38) Brea, R. J.; V´azquez, M. E.; Mosquera, M.; Castedo, L.;
ACS Paragon Plus Environment
4