Bioconjugate Chemistry
Article
folate-targeted liposomal doxorubicin in folate receptor-expressing
tumor models. Cancer Chemother. Pharmacol. 66, 43−52.
(18) Riviere, K., Huang, Z., Jerger, K., Macaraeg, N., and Szoka, F. C.,
Jr. (2011) Antitumor effect of folate-targeted liposomal doxorubicin in
KB tumor-bearing mice after intravenous administration. J. Drug
Targeting 19, 14−24.
(19) Watanabe, K., Kaneko, M., and Maitani, Y. (2012) Functional
coating of liposomes using a folate-polymer conjugate to target folate
receptors. Int. J. Nanomed. 7, 3679−3688.
(20) Wang, Y., Cao, X., Guo, R., Shen, M., Zhang, M., Zhu, M., and
Shi, X. (2011) Targeted delivery of doxorubicin into cancer cells using
a folic acid-dendrimer conjugate. Polym. Chem. 2, 1754−1760.
(21) Sahu, S. K., Mallick, S. K., Santra, S., Maiti, T. K., Ghosh, S. K.,
and Pramanik, P. (2010) In vitro evaluation of folic acid modified
carboxymethyl chitosan nanoparticles loaded with doxorubicin for
targeted delivery. J. Mater. Sci. Mater. Med. 21, 1587−1597.
(22) Scomparin, A., Salmaso, S., Bersani, S., Satchi-Fainaro, R., and
Caliceti, P. (2011) Novel folated and non-folated pullulan
bioconjugates for anticancer drug delivery. Eur. J. Pharm. Sci. 42,
547−558.
(23) Kim, D., Lee, E. S., Oh, K. T., Gao, Z. G., and Bae, Y. H. (2008)
Doxorubicin-loaded polymeric micelle overcomes multidrug resistance
of cancer by double-targeting folate receptor and early endosomal pH.
Small 4, 2043−2050.
(24) Leamon, C. P., Reddy, J. A., Vlahov, I. R., Westrick, E., Parker,
N., Nicoson, J. S., and Vetzel, M. (2007) Comparative preclinical
activity of the folate-targeted Vinca alkaloid conjugates EC140 and
EC145. Int. J. Cancer 121, 1585−1592.
plasmon resonance; TRITC, tetramethyl rhodamine isothio-
cyanate; P-gp, P-glycoprotein; FBP, folate binding protein
REFERENCES
■
(1) Danhier, F., Feron, O., and Preat, V. (2010) To exploit the tumor
microenvironment: Passive and active tumor targeting of nanocarriers
for anti-cancer drug delivery. J. Controlled Release 148, 135−146.
(2) Matsumura, Y., and Maeda, H. (1986) A new concept for
macromolecular therapeutics in cancer chemotherapy: mechanism of
tumoritropic accumulation of proteins and the antitumor agent
smancs. Cancer Res. 46, 6387−6392.
(3) Talekar, M., Kendall, J., Denny, W., and Garg, S. (2011)
Targeting of nanoparticles in cancer: drug delivery and diagnostics.
Anticancer Drugs 22, 949−962.
(4) Hong, R. L., Huang, C. J., Tseng, Y. L., Pang, V. F., Chen, S. T.,
Liu, J. J., and Chang, F. H. (1999) Direct comparison of liposomal
doxorubicin with or without polyethylene glycol coating in C-26
tumor-bearing mice: is surface coating with polyethylene glycol
beneficial? Clin. Cancer Res. 5, 3645−3652.
(5) Maruyama, K. (2011) Intracellular targeting delivery of liposomal
drugs to solid tumors based on EPR effects. Adv. Drug Delivery Rev. 63,
161−169.
(6) Schiffelers, R. M., Koning, G. A., ten Hagen, T. L., Fens, M. H.,
Schraa, A. J., Janssen, A. P., Kok, R. J., Molema, G., and Storm, G.
(2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal
doxorubicin. J. Controlled Release 91, 115−122.
(7) Roche, A. C., Fajac, I., Grosse, S., Frison, N., Rondanino, C.,
Mayer, R., and Monsigny, M. (2003) Glycofection: facilitated gene
transfer by cationic glycopolymers. Cell. Mol. Life Sci. 60, 288−297.
(8) Hatakeyama, H., Akita, H., Maruyama, K., Suhara, T., and
Harashima, H. (2004) Factors governing the in vivo tissue uptake of
transferrin-coupled polyethylene glycol liposomes in vivo. Int. J. Pharm.
281, 25−33.
(9) Miyajima, Y., Nakamura, H., Kuwata, Y., Lee, J. D., Masunaga, S.,
Ono, K., and Maruyama, K. (2006) Transferrin-loaded nido-carborane
liposomes: tumbetaor-targeting boron delivery system for neutron
capture therapy. Bioconjugate Chem. 17, 1314−1320.
(10) Harata, M., Soda, Y., Tani, K., Ooi, J., Takizawa, T., Chen, M.,
Bai, Y., Izawa, K., Kobayashi, S., Tomonari, A., Nagamura, F.,
Takahashi, S., Uchimaru, K., Iseki, T., Tsuji, T., Takahashi, T. A.,
Sugita, K., Nakazawa, S., Tojo, A., Maruyama, K., and Asano, S. (2004)
CD19-targeting liposomes containing imatinib efficiently kill Phila-
delphia chromosome-positive acute lymphoblastic leukemia cells.
Blood 104, 1442−1449.
(11) Sugahara, K. N., Teesalu, T., Karmali, P. P., Kotamraju, V. R.,
Agemy, L., Girard, O. M., Hanahan, D., Mattrey, R. F., and Ruoslahti,
E. (2009) Tissue-penetrating delivery of compounds and nanoparticles
into tumors. Cancer Cell 16, 510−520.
(12) Sugahara, K. N., Teesalu, T., Karmali, P. P., Kotamraju, V. R.,
Agemy, L., Greenwald, D. R., and Ruoslahti, E. (2010) Coadministra-
tion of a tumor-penetrating peptide enhances the efficacy of cancer
drugs. Science 328, 1031−1035.
(13) Chen, H., Ahn, R., Van den Bossche, J., Thompson, D. H., and
O’Halloran, T. V. (2009) Folate-mediated intracellular drug delivery
increases the anticancer efficacy of nanoparticulate formulation of
arsenic trioxide. Mol. Cancer Ther. 8, 1955−1963.
(14) Lu, Y., and Low, P. S. (2002) Folate-mediated delivery of
macromolecular anticancer therapeutic agents. Adv. Drug Delivery Rev.
54, 675−693.
(15) Leamon, C. P., and Low, P. S. (2001) Folate-mediated targeting:
from diagnostics to drug and gene delivery. Drug Discovery Today 6,
44−51.
(16) Parker, N., Turk, M. J., Westrick, E., Lewis, J. D., Low, P. S., and
Leamon, C. P. (2005) Folate receptor expression in carcinomas and
normal tissues determined by a quantitative radioligand binding assay.
Anal. Biochem. 338, 284−293.
(17) Gabizon, A., Tzemach, D., Gorin, J., Mak, L., Amitay, Y.,
Shmeeda, H., and Zalipsky, S. (2010) Improved therapeutic activity of
(25) Hirayama, F., and Uekama, K. (1999) Cyclodextrin-based
controlled drug release system. Adv. Drug Delivery Rev. 36, 125−141.
(26) Li, J. J., Zhao, F., and Li, J. (2011) Supramolecular polymers
based on cyclodextrins for drug and gene delivery. Adv. Biochem. Eng.
Biotechnol. 125, 207−249.
(27) Szejtli, J. (1994) Medicinal applications of cyclodextrins. Med.
Res. Rev. 14, 353−386.
(28) Szente, L., and Szejtli, J. (1999) Highly soluble cyclodextrin
derivatives: chemistry, properties, and trends in development. Adv.
Drug Delivery Rev. 36, 17−28.
(29) Uekama, K., Hirayama, F., and Irie, T. (1998) Cyclodextrin drug
carrier systems. Chem. Rev. 98, 2045−2076.
(30) Salmaso, S., Semenzato, A., Caliceti, P., Hoebeke, J., Sonvico, F.,
Dubernet, C., and Couvreur, P. (2004) Specific antitumor targetable β-
cyclodextrin-poly(ethylene glycol)-folic acid drug delivery bioconju-
gate. Bioconjugate Chem. 15, 997−1004.
(31) Caliceti, P., Salmaso, S., Semenzato, A., Carofiglio, T., Fornasier,
R., Fermeglia, M., Ferrone, M., and Pricl, S. (2003) Synthesis and
physicochemical characterization of folate-cyclodextrin bioconjugate
for active drug delivery. Bioconjugate Chem. 14, 899−908.
(32) Zhang, H., Cai, Z., Sun, Y., Yu, F., Chen, Y., and Sun, B. (2012)
Folate-conjugated β-cyclodextrin from click chemistry strategy and for
tumor-targeted drug delivery. J. Biomed. Mater. Res. A 100, 2441−2449.
(33) Stella, V. J., and He, Q. (2008) Cyclodextrins. Toxicol. Pathol.
36, 30−42.
(34) Ooya, T., Eguchi, M., and Yui, N. (2003) Supramolecular design
for multivalent interaction: maltose mobility along polyrotaxane
enhanced binding with concanavalin A. J. Am. Chem. Soc. 125,
13016−13017.
(35) Ooya, T., Utsunomiya, H., Eguchi, M., and Yui, N. (2005) Rapid
binding of concanavalin A and maltose-polyrotaxane conjugates due to
mobile motion of α-cyclodextrins threaded onto a poly(ethylene
glycol). Bioconjugate Chem. 16, 62−69.
(36) Abe, H., Kenmoku, A., Yamaguch, N., and Hattori, K. (2002)
Structural effects of oligosaccharide-branched cyclodextrins on the
dual recognition toward lectin and drug. J. Incl. Phenom. Macrocycl.
Chem. 44, 39−47.
(37) Hattori, K., Kenmoku, A., Mizuguchi, T., Ikeda, D., Mizuno, M.,
and Inazu, T. (2006) Saccharide-branched Cyclodextrins as Targeting
Drug Carriers. J. Incl. Phenom. Macrocycl. Chem. 56, 9−16.
I
dx.doi.org/10.1021/bc400015r | Bioconjugate Chem. XXXX, XXX, XXX−XXX